Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.

Filter by Pathway Type:



Showing 48681 - 48690 of 48688 pathways
SMPDB ID Pathway Chemical Compounds Proteins

SMP0000220

Pw000080 View Pathway
Disease

Xanthine Dehydrogenase Deficiency (Xanthinuria)

Xanthinuria, also known as xanthine oxidase deficiency, is a rare genetic disorder causing the accumulation of xanthine. It is caused by a deficiency of the enzyme xanthine oxidase, which causes accumulation of xanthine in plasma; uric acid in serum; and hypoxanthine, uric acid and xanthine in urine. Symptoms include arthralgia, hematuria, mental retardation, stomatisis, and urolithiasis.

SMP0000512

Pw000488 View Pathway
Disease

Xanthinuria Type I

Xanthinuria, also known as xanthine oxidase deficiency, is a rare genetic disorder causing the accumulation of xanthine. It is caused by a deficiency of the enzyme xanthine oxidase. Classic xanthinuria is a rare metabolic defect concerning the final reactions of purine catabolism. There are two types of the disorder: type I results from xanthine dehydrogenase (XDH) deficiency, while type II is characterized by lack of both XDH and aldehyde oxidase activity. Both types are clinically similar and are characterized by elevated xanthine concentration in body fluids that can lead to xanthine crystallisation. The most common manifestation of the disease is urolithiasis, but in most cases xanthinuria remains asymptomatic and the diagnosis is accidental.

SMP0000513

Pw000489 View Pathway
Disease

Xanthinuria Type II

Xanthinuria, also known as xanthine oxidase deficiency, is a rare genetic disorder causing the accumulation of xanthine. It is caused by a deficiency of the enzyme xanthine oxidase. Classic xanthinuria is a rare metabolic defect concerning the final reactions of purine catabolism. There are two types of the disorder: type I results from xanthine dehydrogenase (XDH) deficiency, while type II is characterized by lack of both XDH and aldehyde oxidase activity. Both types are clinically similar and are characterized by elevated xanthine concentration in body fluids that can lead to xanthine crystallisation. The most common manifestation of the disease is urolithiasis, but in most cases xanthinuria remains asymptomatic and the diagnosis is accidental.

SMP0000279

Pw000301 View Pathway
Drug Action

Ximelagatran Action Pathway

Ximelagatran was the first member of the drug class of direct thrombin inhibitors that can be taken orally. It acts solely by inhibiting the actions of thrombin. Ximelagatran is a prodrug, being converted in vivo to the active agent melagatran.

SMP0000746

Pw000723 View Pathway
Drug Action

Zalcitabine Action Pathway

Zalcitabine is a nucleoside reverse transcriptase inhibitor (NRTI) with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Within cells, zalcitabine is converted to its active metabolite, dideoxycytidine 5'-triphosphate (ddCTP), by the sequential action of cellular enzymes. ddCTP interferes with viral RNA-directed DNA polymerase (reverse transcriptase) by competing for utilization of the natural substrate deoxycytidine 5'-triphosphate (dCTP), as well as incorpating into viral DNA.

SMP0000316

Pw000195 View Pathway
Disease

Zellweger Syndrome

Zellweger syndrome (Cerebrohepatorenal syndrome; Cerebro-hepato-renal syndrome) phenotype is caused by mutations in any of several different genes involved in peroxisome biogenesis, Peroxins (PEX proteins, peroxisomal transport proteins) proteins 1,2,3,5,6,12,14, and 26. Peroxin proteins serve several functions including the recognition of cytoplasmic proteins that contain peroxisomal targeting signals (PTS) that tag them for transport by peroxismnal proteins to the peroxisome. Zellweger syndrome is characterized by accumulation of cholesterol in plasma, tissues and cerebrospinal fluid, decreased chenodeoxycholic acid and increased concentration of bile alcohols and their glyconjugates. Increased concentrations of cholestanol and apolipoprotein B are also observed in spinal fluid. Symptoms include dementia, psychiatric disturbances, pyramidal and/or cerebellar signs, and seizures.

SMP0000747

Pw000724 View Pathway
Drug Action

Zidovudine Action Pathway

Zidovudine, a structural analog of thymidine, is a prodrug that must be phosphorylated to its active 5′-triphosphate metabolite, zidovudine triphosphate (ZDV-TP). It inhibits the activity of HIV-1 reverse transcriptase (RT) via DNA chain termination after incorporation of the nucleotide analogue. It competes with the natural substrate dGTP and incorporates itself into viral DNA.

SMP0000107

Pw000270 View Pathway
Drug Action

Zoledronate Action Pathway

The action of zoledronate on bone tissue is based partly on its affinity for hydroxyapatite, which is part of the mineral matrix of bone. Zoledronate also targets farnesyl pyrophosphate (FPP) synthase. Nitrogen-containing bisphosphonates such as zoledronate appear to act as analogues of isoprenoid diphosphate lipids, thereby inhibiting FPP synthase, an enzyme in the mevalonate pathway. Inhibition of this enzyme in osteoclasts prevents the biosynthesis of isoprenoid lipids (FPP and GGPP) that are essential for the post-translational farnesylation and geranylgeranylation of small GTPase signalling proteins. This activity inhibits osteoclast activity and reduces bone resorption and turnover. In postmenopausal women, it reduces the elevated rate of bone turnover, leading to, on average, a net gain in bone mass.
Showing 48681 - 48690 of 48688 pathways