Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 741 - 750 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0128910

Pw130529 View Pathway

Thrombin Drug Metabolism

Metabolic

SMP0128928

Pw130547 View Pathway

Thrombin alfa Drug Metabolism

Metabolic

SMP0000452

Pw000166 View Pathway

Threonine and 2-Oxobutanoate Degradation

2-oxobutanoate, also known as 2-Ketobutyric acid, is a 2-keto acid that is commonly produced in the metabolism of amino acids such as methionine and threonine. Like other 2-keto acids, degradation of 2-oxobutanoate occurs in the mitochondrial matrix and begins with oxidative decarboxylation to its acyl coenzyme A derivative, propionyl-CoA. This reaction is mediated by a class of large, multienzyme complexes called 2-oxo acid dehydrogenase complexes. While no 2-oxo acid dehydrogenase complex is specific to 2-oxobutanoate, numerous complexes can catalyze its reaction. In this pathway the branched-chain alpha-keto acid dehydrogenase complex is depicted. All 2-oxo acid dehydrogenase complexes consist of three main components: a 2-oxo acid dehydrogenase (E1) with a thiamine pyrophosphate cofactor, a dihydrolipoamide acyltransferase (E2) with a lipoate cofactor, and a dihydrolipoamide dehydrogenase (E3) with a flavin cofactor. E1 binds the 2-oxobutanoate to the lipoate on E2, which then transfers the propionyl group to coenzyme A, producing propionyl-CoA and reducing the lipoate. E3 then transfers protons to NAD in order to restore the lipoate. Propionyl-CoA carboxylase transforms the propionyl-CoA to S-methylmalonyl-CoA, which is then converted to R-methylmalonyl-CoA via methylmalonyl-CoA epimerase. In the final step, methylmalonyl-CoA mutase acts on the R-methylmalonyl-CoA to produce succinyl-CoA.
Metabolic

SMP0175118

Pw176805 View Pathway

Thonzylamine H1-Antihistamine Immune Response Action Pathway

Thonzylamine is an H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Reducing the activity of the NF-κB immune response transcription factor through the phospholipase C and the phosphatidylinositol (PIP2) signalling pathways also decreases antigen presentation and the expression of pro-inflammatory cytokines, cell adhesion molecules, and chemotactic factors. Furthermore, lowering calcium ion concentration leads to increased mast cell stability which reduces further histamine release. First-generation antihistamines readily cross the blood-brain barrier and cause sedation and other adverse central nervous system (CNS) effects (e.g. nervousness and insomnia). Second-generation antihistamines are more selective for H1-receptors of the peripheral nervous system (PNS) and do not cross the blood-brain barrier. Consequently, these newer drugs elicit fewer adverse drug reactions.
Drug Action

SMP0175026

Pw176713 View Pathway

Thonzylamine H1-Antihistamine Blood Vessel Constriction Action Pathway

Thonzylamine is an H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Thonzylamine inhibits the H1 histamine receptor on blood vessel endothelial cells. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin. Calcium bound calmodulin is required for the activation of the calmodulin-binding domain of nitric oxide synthase. The inhibition of nitric oxide synthesis prevents the activation of myosin light chain phosphatase. This causes an accumulation of myosin light chain-phosphate which causes the muscle to contract and the blood vessel to constrict, decreasing the swelling and fluid leakage from the blood vessels caused by allergens.
Drug Action

SMP0058769

Pw059696 View Pathway

Thonzylamine H1-Antihistamine Action

Thonzylamine is a first-generation ethylenediamine H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Reducing the activity of the NF-κB immune response transcription factor through the phospholipase C and the phosphatidylinositol (PIP2) signalling pathways also decreases antigen presentation and the expression of pro-inflammatory cytokines, cell adhesion molecules, and chemotactic factors. Furthermore, lowering calcium ion concentration leads to increased mast cell stability which reduces further histamine release. First-generation antihistamines readily cross the blood-brain barrier and cause sedation and other adverse central nervous system (CNS) effects (e.g. nervousness and insomnia). Second-generation antihistamines are more selective for H1-receptors of the peripheral nervous system (PNS) and do not cross the blood-brain barrier. Consequently, these newer drugs elicit fewer adverse drug reactions.
Drug Action

SMP0174934

Pw176620 View Pathway

Thonzylamine H1 Antihistamine Smooth Muscle Relaxation Action Pathway

Thonzylamine is an H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Thonzylamine also inhibits the H1 histamine receptor on bronchiole smooth muscle myocytes. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin.Calcium bound calmodulin is required for the activation of myosin light chain kinase. This prevents the phosphorylation of myosin light chain 3, causing an accumulation of myosin light chain 3. This causes muscle relaxation, opening up the bronchioles in the lungs, making breathing easier.
Drug Action

SMP0144644

Pw146312 View Pathway

Thonzylamine Drug Metabolism Action Pathway

Drug Action

SMP0144528

Pw146196 View Pathway

Thonzonium Drug Metabolism Action Pathway

Drug Action
  • Thonzonium

SMP0144949

Pw146617 View Pathway

Thiram Drug Metabolism Action Pathway

Drug Action
  • Thiram
Showing 741 - 750 of 65006 pathways