Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 11 - 20 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0000588

Pw000564 View Pathway

Striated Muscle Contraction

Tubular striated muscle cells (i.e. skeletal and cardiac myocytes) are composed of bundles of rod-like myofibrils. Each individual myofibril consists of many repeating units called sarcomeres. These functional units, in turn, are composed of many alternating actin and mysoin protein filaments that produce muscle contraction. The muscle contraction process is initiated when the muscle cell is depolarized enough for an action potential to occur. When acetylcholine is released from the motor neuron axon terminals that are adjacent to the muscle cells, it binds to receptors on the sarcolemma (muscle cell membrane), causing nicotinic acetylcholine receptors to be activated and the sodium/potassium channels to be opened. The fast influx of sodium and slow efflux of potassium through the channel causes depolarization. The resulting action potential that is generated travels along the sarcolemma and down the T-tubule, activating the L-type voltage-dependent calcium channels on the sarcolemma and ryanodine receptors on the sarcoplasmic reticulum. When these are activated, it triggers the release of calcium ions from the sarcoplasmic reticulum into the cytosol. From there, the calcium ions bind to the protein troponin which displaces the tropomysoin filaments from the binding sites on the actin filaments. This allows for myosin filaments to be able to bind to the actin. According to the Sliding Filament Theory, the myosin heads that have an ADP and phosphate attached binds to the actin, forming a cross-bridge. Once attached, the myosin performs a powerstroke which slides the actin filaments together. The ATP and phosphate are dislodged during this process. However, ATP now binds to the myosin head, which causes the myosin to detach from the actin. The cycle repeats once the attached ATP dissociates into ADP and phosphate, and the myosin performs another powerstroke, bringing the actin filaments even closer together. Numerous actin filaments being pulled together simultaneously across many muscles cells triggers muscle contraction.
Physiological

SMP0125381

Pw126929 View Pathway

Smooth muscle contraction - relaxation

Physiological

SMP0125380

Missing View Pathway

Smooth muscle contractile mechanism

Physiological

SMP0122918

Missing View Pathway

Shaik Mohammad Naushad

Physiological

SMP0063715

Missing View Pathway

samar

using Immunofluorescence for breast cancer
Physiological

SMP0124617

Pw126100 View Pathway

Red Blood Cell Gas Exchange

The primary function of erythrocytes (red blood cells) is to exchange oxygen and carbon dioxide through tiny blood vessels called capillaries. In the lungs, oxygen diffuses into the blood, hemoglobin molecules release carbon dioxide picked up from body tissues. This allows oxygen to attach to the hemoglobin molecules and it can be carried to the rest of the body. Hemoglobin is a protein that makes blood red and carries oxygen throughout the circulation. The adult form of hemoglobin contains 2 alpha chains and 2 beta chains. When CO2 is removed from tissues, a portion of it is dissolved in the plasma and converted to bicarbonate. A majority of the CO2 is taken up by the RBCs and follows one of three transport pathways. 1. The CO2 is dissolved into the RBC cytoplasm. 2. CO2 is converted, by carbonic anhydrase, into bicarbonate which is exchanged at the cell membrane for a chloride ion (involved in the Chloride shift). This bicarbonate removal increases CO2 uptake into the cell. 3. CO2 is carried by carbaminohemoglobin which can be transported to the lung for removal. After offloading of oxygen into tissues, hemoglobin has an increased affinity for carbon dioxide and hydrogen ions (Haldane effect).
Physiological

SMP0122519

Missing View Pathway

Pyroptosis

Physiological

SMP0127682

Pw129301 View Pathway

Prostaglandin

Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) (The HUGO official symbol is PTGS2; HGNC ID, HGNC:9605), also known as cyclooxygenase-2 or COX-2, is an enzyme that in humans is encoded by the PTGS2 gene. In humans it is one of two cyclooxygenases. It is involved in the conversion of arachidonic acid to prostaglandin H2, an important precursor of prostacyclin, which is expressed in inflammation. Prostaglandins (PG) are a group of physiologically active lipid compounds called eicosanoids having diverse hormone-like effects in animals. Prostaglandins have been found in almost every tissue in humans and other animals. They are derived enzymatically from the fatty acid arachidonic acid. Every prostaglandin contains 20 carbon atoms, including a 5-carbon ring. They are a subclass of eicosanoids and of the prostanoid class of fatty acid derivatives. The structural differences between prostaglandins account for their different biological activities. A given prostaglandin may have different and even opposite effects in different tissues in some cases. The ability of the same prostaglandin to stimulate a reaction in one tissue and inhibit the same reaction in another tissue is determined by the type of receptor to which the prostaglandin binds. They act as autocrine or paracrine factors with their target cells present in the immediate vicinity of the site of their secretion. Prostaglandins differ from endocrine hormones in that they are not produced at a specific site but in many places throughout the human body. Specific prostaglandins are named with a letter (which indicates the type of ring structure) followed by a number (which indicates the number of double bonds in the hydrocarbon structure). For example, prostaglandin E1 is abbreviated PGE1, and prostaglandin I2 is abbreviated PGI2. Prostaglandins are produced following the sequential oxygenation of arachidonic acid, DGLA or EPA by cyclooxygenases (COX-1 and COX-2) and terminal prostaglandin synthases. The classic dogma is as follows: COX-1 is responsible for the baseline levels of prostaglandins and COX-2 produces prostaglandins through stimulation. However, while COX-1 and COX-2 are both located in the blood vessels, stomach and the kidneys, prostaglandin levels are increased by COX-2 in scenarios of inflammation and growth. Prostaglandin E2 (PGE2) — the most abundant prostaglandin — is generated from the action of prostaglandin E synthases on prostaglandin H2 (prostaglandin H2, PGH2). Cold exposure and IUDs may increase prostaglandin production.
Physiological

SMP0130469

Pw132088 View Pathway

Plasminogen

Plasminogen is a plasma glycoprotein. Plasminogen (PLG) is the zymogen of plasmin, the major enzyme that degrades fibrin clots. In addition to its binding and activation on fibrin clots, PLG also specifically interacts with cell surfaces where it is more efficiently activated by PLG activators, compared with the reaction in solution. This results in association of the broad-spectrum proteolytic activity of plasmin with cell surfaces that functions to promote cell migration. Plasmin is an important enzyme (EC 3.4.21.7) present in blood that degrades many blood plasma proteins, including fibrin clots. The degradation of fibrin is termed fibrinolysis. In humans, the plasmin protein (in the zymogen form of plasminogen) is encoded by the PLG gene. Plasmin is released as a zymogen called plasminogen (PLG) from the liver into the systemic circulation. Two major glycoforms of plasminogen are present in humans - type I plasminogen contains two glycosylation moieties (N-linked to N289 and O-linked to T346), whereas type II plasminogen contains only a single O-linked sugar (O-linked to T346). Type II plasminogen is preferentially recruited to the cell surface over the type I glycoform. Conversely, type I plasminogen appears more readily recruited to blood clots. n circulation, plasminogen adopts a closed, activation-resistant conformation. Upon binding to clots, or to the cell surface, plasminogen adopts an open form that can be converted into active plasmin by a variety of enzymes, including tissue plasminogen activator (tPA), urokinase plasminogen activator (uPA), kallikrein, and factor XII (Hageman factor). Fibrin is a cofactor for plasminogen activation by tissue plasminogen activator. Urokinase plasminogen activator receptor (uPAR) is a cofactor for plasminogen activation by urokinase plasminogen activator. The conversion of plasminogen to plasmin involves the cleavage of the peptide bond between Arg-561 and Val-562.
Physiological

SMP0124530

Missing View Pathway

Plant

Physiological
Showing 11 - 20 of 143 pathways