Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 31 - 40 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0143104

Pw144772 View Pathway

Acamprosate Drug Metabolism Action Pathway

Drug Action

SMP0142744

Pw144412 View Pathway

Acarbose Drug Metabolism Action Pathway

Drug Action

SMP0125433

Pw126985 View Pathway

Acción de Fármacos sobre el Metabolismo oxidativo

Drug Action

SMP0125434

Pw126986 View Pathway

Acción de fármacos sobre la Peroxidación Lipidica

Drug Action

SMP0125432

Pw126984 View Pathway

Acción de los Fullerenos 2

Drug Action
  • Electron
  • Ethylphenylmalonate C70
  • Fullerene(C60)-tetracosol

SMP0000296

Pw000364 View Pathway

Acebutolol Action Pathway

Acebutolol (also known as Sectral or Prent) is a selective β1 adrenergic receptor antagonist (beta blocker), which can be used for treatment of high blood pressure (hypertension) and irregular heartbeats (arrhythmias). Acebutolol also has the ability to mild intrinsic sympathomimetic activity (ISA) with effective range of dosage. Adrenaline (also known as epinephrine) can activate β1 adrenergic receptor so that the heart rate and output will be increased. Renin is a hormone that generated from kidney, which could lead to constriction of blood vessels. Beta blockers could efficiently prohibit renin release.
Drug Action

SMP0124509

Pw125990 View Pathway

Acebutolol Action Pathway

Acebutolol is a cardioselective beta blocker. It can be administered orally, where it passes through hepatic portal circulation, and enters the bloodstream and travels to act on cardiomyocytes. In bronchial and vascular smooth muscle, acebutolol can compete with epinephrine for beta-2 adrenergic receptors. By competing with catecholamines for adrenergic receptors, it inhibits sympathetic stimulation of the heart. The reduction of neurotransmitters binding to beta receptor proteins in the heart inhibits adenylate cyclase type 1. Because adenylate cyclase type 1 typically activates cAMP synthesis, which in turn activates PKA production, which then activates SRC and nitric oxide synthase, its inhibition causes the inhibition of cAMP, PKA, SRC and nitric oxide synthase signaling. Following this chain of reactions, we see that the inhibition of nitric oxide synthase reduces nitric oxide production outside the cell which results in vasoconstriction. On a different end of this reaction chain, the inhibition of SRC in essence causes the activation of Caspase 3 and Caspase 9. This Caspase cascade leads to cell apoptosis. The net result of all these reactions is a decreased sympathetic effect on cardiac cells, causing the heart rate to slow and arterial blood pressure to lower; thus, acebutolol administration and binding reduces resting heart rate, cardiac output, afterload, blood pressure and orthostatic hypotension. By prolonging diastolic time, it can prevent re-infarction. Clinically, it is used to increase atrioventricular block to treat supraventricular dysrhythmias. Acebutolol also reduce sympathetic activity and is used to treat hypertension, angina, migraine headaches, and hypertrophic subaortic stenosis.
Drug Action

SMP0143612

Pw145280 View Pathway

Acebutolol Drug Metabolism Action Pathway

Drug Action

SMP0144959

Pw146627 View Pathway

Aceclidine Drug Metabolism Action Pathway

Drug Action
  • Aceclidine

SMP0124997

Pw126527 View Pathway

Aceclofenac Action Pathway

Aceclofenac is a non-steroidal anti-inflammatory drug (NSAID) with marked anti-inflammatory and analgesic properties. It is used to treat osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis. Aceclofenac targets the prostaglandin G/H synthase-1 (COX-1) and prostaglandin G/H synthase-2 (COX-2) in the cyclooxygenase pathway. Aceclofenac displays more selectivity towards COX-2 (IC50 of 0.77uM) than COX-1 (IC50 of >100uM), which promotes gastric tolerance compared to the other NSAIDs. The cyclooxygenase pathway begins in the cytosol with phospholipids being converted into arachidonic acid by the action of phospholipase A2. The rest of the pathway occurs on the endoplasmic reticulum membrane, where prostaglandin G/H synthase 1 & 2 convert arachidonic acid into prostaglandin H2. Prostaglandin H2 can either be converted into thromboxane A2 via thromboxane A synthase, prostacyclin/prostaglandin I2 via prostacyclin synthase, or prostaglandin E2 via prostaglandin E synthase. COX-2 is an inducible enzyme, and during inflammation, it is responsible for prostaglandin synthesis. It leads to the formation of prostaglandin E2 which is responsible for contributing to the inflammatory response by activating immune cells and for increasing pain sensation by acting on pain fibers. Aceclofenac inhibits the action of COX-1 and COX-2 on the endoplasmic reticulum membrane. This reduces the formation of prostaglandin H2 and therefore, prostaglandin E2 (PGE2). The low concentration of prostaglandin E2 attenuates the effect it has on stimulating immune cells and pain fibers, consequently reducing inflammation and pain. This drug is administered as an oral tablet.
Drug Action
Showing 31 - 40 of 4619 pathways