PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW144697View Pathway |
drug action
Valdecoxib Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 14:15 Last Updated: October 07, 2023 at 14:15 |
PW176240View Pathway |
Valdecoxib Predicted Metabolism PathwayHomo sapiens
Metabolites of Valdecoxib are predicted with biotransformer.
|
Creator: Omolola Created On: December 04, 2023 at 13:07 Last Updated: December 04, 2023 at 13:07 |
PW127470View Pathway |
drug action
Valganciclovir Action PathwayHomo sapiens
Valganciclovir is an antiviral medication used to treat cytomegalovirus (CMV) retinitis in patients diagnosed with acquired immunodeficiency syndrome (AIDS). Valganciclovir is a prodrug of ganciclovir. After administration, valganciclovir is rapidly converted to ganciclovir in the intestine or liver by intestinal or hepatic esterases.Ganciclovir is transported into the blood and to the infected cells. It is then converted to the active form by a virus-encoded cellular enzyme, thymidine kinase, which catalyzes phosphorylation of ganciclovir to ganciclovir monophosphate. Ganciclovir monophosphate is converted into the diphosphate by cellular guanylate kinase then into the triphosphate by a number of cellular enzymes. Ganciclovir triphosphate inhibits the activity of DNA polymerase by competing with its substrate dGTP. Ganciclovir triphosphate also gets incorporated into viral DNA, but since it lacks the 3'-OH group which is needed to form the 5′ to 3′ phosphodiester linkage essential for DNA chain elongation, this causes DNA chain termination, preventing the growth of viral DNA. Less Viral DNA is transported into the nucleus, therefore, less viral DNA is integrated into the host DNA. Less viral proteins produced, fewer viruses can form.
|
Creator: Ray Kruger Created On: March 07, 2023 at 09:43 Last Updated: March 07, 2023 at 09:43 |
PW145477View Pathway |
drug action
Valganciclovir Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 15:54 Last Updated: October 07, 2023 at 15:54 |
PW122596View Pathway |
Valine BiosynthesisPseudomonas aeruginosa
The pathway of valine biosynthesis starts with pyruvic acid interacting with a hydrogen ion through a acetolactate synthase / acetohydroxybutanoate synthase or a acetohydroxybutanoate synthase / acetolactate synthase resulting in the release of carbon dioxide and (S)-2-acetolactate. The latter compound then interacts with a hydrogen ion through an NADPH driven
acetohydroxy acid isomeroreductase resulting in the release of a NADP and an (R) 2,3-dihydroxy-3-methylvalerate. The latter compound is then dehydrated by a dihydroxy acid dehydratase resulting in the release of water and isovaleric acid. Isovaleric acid interacts with an L-glutamic acid through a Valine Transaminase resulting in a oxoglutaric acid and an L-valine. L-valine is then transported into the periplasmic space through a L-valine efflux transporter.
|
Creator: Ana Marcu Created On: August 12, 2019 at 18:20 Last Updated: August 12, 2019 at 18:20 |
PW000812View Pathway |
Valine BiosynthesisEscherichia coli
The pathway of valine biosynthesis starts with pyruvic acid interacting with a hydrogen ion through a acetolactate synthase / acetohydroxybutanoate synthase or a acetohydroxybutanoate synthase / acetolactate synthase resulting in the release of carbon dioxide and (S)-2-acetolactate. The latter compound then interacts with a hydrogen ion through an NADPH driven
acetohydroxy acid isomeroreductase resulting in the release of a NADP and an (R) 2,3-dihydroxy-3-methylvalerate. The latter compound is then dehydrated by a dihydroxy acid dehydratase resulting in the release of water and isovaleric acid. Isovaleric acid interacts with an L-glutamic acid through a Valine Transaminase resulting in a oxoglutaric acid and an L-valine. L-valine is then transported into the periplasmic space through a L-valine efflux transporter.
|
Creator: miguel ramirez Created On: March 16, 2015 at 16:22 Last Updated: March 16, 2015 at 16:22 |
PW002474View Pathway |
Valine BiosynthesisSaccharomyces cerevisiae
The pathway of valine biosynthesis starts with pyruvic acid interacting with a hydrogen ion through a acetolactate synthase / acetohydroxybutanoate synthase or a acetohydroxybutanoate synthase / acetolactate synthase resulting in the release of carbon dioxide and (S)-2-acetolactate. The latter compound then interacts with a hydrogen ion through an NADPH driven acetohydroxy acid isomeroreductase resulting in the release of a NADP and an (R) 2,3-dihydroxy-3-methylvalerate. The latter compound is then dehydrated by a dihydroxy acid dehydratase resulting in the release of water and isovaleric acid. Isovaleric acid interacts with an L-glutamic acid through a Valine Transaminase resulting in a oxoglutaric acid and an L-valine.
|
Creator: miguel ramirez Created On: February 19, 2016 at 13:28 Last Updated: February 19, 2016 at 13:28 |
PW002614View Pathway |
Valine BiosynthesisArabidopsis thaliana
The pathway of valine biosynthesis starts with pyruvic acid interacting with a hydrogen ion through a acetolactate synthase / acetohydroxybutanoate synthase or a acetohydroxybutanoate synthase / acetolactate synthase resulting in the release of carbon dioxide and (S)-2-acetolactate. The latter compound then interacts with a hydrogen ion through an NADPH driven acetohydroxy acid isomeroreductase resulting in the release of a NADP and an (R) 2,3-dihydroxy-3-methylvalerate. The latter compound is then dehydrated by a dihydroxy acid dehydratase resulting in the release of water and isovaleric acid. Isovaleric acid interacts with an L-glutamic acid through a Valine Transaminase resulting in a oxoglutaric acid and an L-valine.
|
Creator: miguel ramirez Created On: June 08, 2016 at 12:03 Last Updated: June 08, 2016 at 12:03 |
PW002615View Pathway |
Valine DegradationArabidopsis thaliana
The degradation of valine starts either in the mitochondria or the cytosol. L-valine reacts with 2-oxoglutarate through a branch-chain amino acid aminotransferase resulting in the release of L-glutamate and 3-methyl-2-oxobutanoate. The latter compound reacts with 2-oxoisovalerate carboxy-lyase resulting in the release of carbon dioxide and isobutanal. Isobutanal can then be turned into isobutanol through a alcohol dehydrogenase
|
Creator: miguel ramirez Created On: June 08, 2016 at 12:06 Last Updated: June 08, 2016 at 12:06 |
PW273007View Pathway |
Valine DegradationStreptomyces avermitilis
Valine degradation is a crucial metabolic pathway involved in breaking down the essential amino acid valine into molecules that can enter the tricarboxylic acid (TCA) cycle, thereby contributing to energy production and various biosynthetic processes. This pathway involves several enzymatic reactions that sequentially convert valine into succinyl-CoA, a key TCA cycle intermediate. This degradation process not only aids in cellular energy generation but also provides precursors for the synthesis of other important biomolecules.
|
Creator: Julia Wakoli Created On: June 11, 2024 at 12:56 Last Updated: June 11, 2024 at 12:56 |