Loader

Pathways

PathWhiz ID Pathway Meta Data

PW002473

Pw002473 View Pathway
metabolic

Ubiquinone Biosynthesis

Saccharomyces cerevisiae
Ubiquinone is also known as coenzyme Q10. It is a 1,4-benzoquinone, where Q refers to the quinone chemical group, and 10 refers to the isoprenyl chemical subunits. Ubiquinone is a carrier of hydrogen atoms (protons plus electrons) and functions as an ubiquitous coenzyme in redox reactions, where it is first reduced to the enzyme-bound intermediate radical semiquinone and in a second reduction to ubiquinol (Dihydroquinone; CoQH2). Ubiquinone is not tightly bound or covalently linked to any known protein complex but is very mobile. In eukaryotes ubiquinones were found in the inner mito-chondrial membrane and in other membranes such as the endoplasmic reticulum, Golgi vesicles, lysosomes and peroxisomes. The benzoquinone portion of Coenzyme Q10 is synthesized from tyrosine, whereas the isoprene sidechain is synthesized from acetyl-CoA through the mevalonate pathway. The mevalonate pathway is also used for the first steps of cholesterol biosynthesis. The enzyme para-hydroxybenzoate polyprenyltransferase catalyzes the condensation of p-hydroxybenzoate with polyprenyl diphosphate to generate ubiquinone.

PW064821

Pw064821 View Pathway
protein

Ubiquitin–Proteasome Pathway

Homo sapiens
The ubiquitin-proteasome pathway is the pathway in which molecules, specifically proteins, are broken down into smaller molecules in the cytosol or in the nucleus.This pathway subsequently has effects in many other pathways and processes. This pathway uses 2 distinct steps. The first step is that the protein being broken down is tagged by multiple ubiquitin units attaching to the protein. The second step is that the protein that has been tagged degrades as it is catalyzed by the 26S proteasome. This pathway is important for DNA repair, regulating the amount of proteins, and the creation of antigen-peptide.

PW122192

Pw122192 View Pathway
protein

Ubiquitin–Proteasome Pathway

Bos taurus
The ubiquitin-proteasome pathway is the pathway in which molecules, specifically proteins, are broken down into smaller molecules in the cytosol or in the nucleus.This pathway subsequently has effects in many other pathways and processes. This pathway uses 2 distinct steps. The first step is that the protein being broken down is tagged by multiple ubiquitin units attaching to the protein. The second step is that the protein that has been tagged degrades as it is catalyzed by the 26S proteasome. This pathway is important for DNA repair, regulating the amount of proteins, and the creation of antigen-peptide.

PW122168

Pw122168 View Pathway
protein

Ubiquitin–Proteasome Pathway

Mus musculus
The ubiquitin-proteasome pathway is the pathway in which molecules, specifically proteins, are broken down into smaller molecules in the cytosol or in the nucleus.This pathway subsequently has effects in many other pathways and processes. This pathway uses 2 distinct steps. The first step is that the protein being broken down is tagged by multiple ubiquitin units attaching to the protein. The second step is that the protein that has been tagged degrades as it is catalyzed by the 26S proteasome. This pathway is important for DNA repair, regulating the amount of proteins, and the creation of antigen-peptide.

PW122216

Pw122216 View Pathway
protein

Ubiquitin–Proteasome Pathway

Rattus norvegicus
The ubiquitin-proteasome pathway is the pathway in which molecules, specifically proteins, are broken down into smaller molecules in the cytosol or in the nucleus.This pathway subsequently has effects in many other pathways and processes. This pathway uses 2 distinct steps. The first step is that the protein being broken down is tagged by multiple ubiquitin units attaching to the protein. The second step is that the protein that has been tagged degrades as it is catalyzed by the 26S proteasome. This pathway is important for DNA repair, regulating the amount of proteins, and the creation of antigen-peptide.

PW124534

Pw124534 View Pathway
protein

Ubiquitin–Proteasome Pathway 1613937577

Homo sapiens
The ubiquitin-proteasome pathway is the pathway in which molecules, specifically proteins, are broken down into smaller molecules in the cytosol or in the nucleus.This pathway subsequently has effects in many other pathways and processes. This pathway uses 2 distinct steps. The first step is that the protein being broken down is tagged by multiple ubiquitin units attaching to the protein. The second step is that the protein that has been tagged degrades as it is catalyzed by the 26S proteasome. This pathway is important for DNA repair, regulating the amount of proteins, and the creation of antigen-peptide.

PW146911

Pw146911 View Pathway
drug action

Ubrogepant Drug Metabolism Action Pathway

Homo sapiens

PW176296

Pw176296 View Pathway
metabolic

Ubrogepant Predicted Metabolism Pathway

Homo sapiens
Metabolites of Ubrogepant are predicted with biotransformer.

PW145696

Pw145696 View Pathway
drug action

Udenafil Drug Metabolism Action Pathway

Homo sapiens

PW176414

Pw176414 View Pathway
metabolic

Udenafil Predicted Metabolism Pathway

Homo sapiens
Metabolites of Udenafil are predicted with biotransformer.