PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW121906View Pathway |
disease
3-beta-Hydroxysteroid Dehydrogenase DeficiencyMus musculus
3-beta-hydroxysteroid dehydrogenase (HSD) deficiency is an extremely rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by an defect in the HSD3B2 gene which encodes for the 3 beta-hydroxysteroid dehydrogenase enzyme, which is responsible for forming cortisol from 11b,17a,21-trihydroxypregnenolone. When the enzyme is not correctly produced, cortisol levels in the cell are lowered, and as cortisol is used in the production of other steroids, it may affect their levels as well. 3-beta-HSD deficiency is characterized by low levels of cortisol produced in the adrenal glands. Symptoms include abnormal genitalia for both males and females, as well as infertility. There is also a more severe salt-wasting form of this deficiency, characterized by dehydration. Treatment for 3-beta-HSD deficiency includes steroid replacement, as well as sex hormone replacement during puberty to allow proper development. Surgery can also be used to correct any genital abnormalities that may occur. It is estimated that 3-beta-HSD deficiency affects less than 1 in 1,000,000 individuals, with around 60 cases reported.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:50 Last Updated: September 10, 2018 at 15:50 |
PW000695View Pathway |
disease
3-beta-Hydroxysteroid Dehydrogenase DeficiencyHomo sapiens
3-beta-hydroxysteroid dehydrogenase (HSD) deficiency is an extremely rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by an defect in the HSD3B2 gene which encodes for the 3 beta-hydroxysteroid dehydrogenase enzyme, which is responsible for forming cortisol from 11b,17a,21-trihydroxypregnenolone. When the enzyme is not correctly produced, cortisol levels in the cell are lowered, and as cortisol is used in the production of other steroids, it may affect their levels as well. 3-beta-HSD deficiency is characterized by low levels of cortisol produced in the adrenal glands. Symptoms include abnormal genitalia for both males and females, as well as infertility. There is also a more severe salt-wasting form of this deficiency, characterized by dehydration. Treatment for 3-beta-HSD deficiency includes steroid replacement, as well as sex hormone replacement during puberty to allow proper development. Surgery can also be used to correct any genital abnormalities that may occur. It is estimated that 3-beta-HSD deficiency affects less than 1 in 1,000,000 individuals, with around 60 cases reported.
|
Creator: WishartLab Created On: June 23, 2014 at 01:42 Last Updated: June 23, 2014 at 01:42 |
PW127372View Pathway |
disease
3-beta-Hydroxysteroid Dehydrogenase DeficiencyHomo sapiens
3-beta-hydroxysteroid dehydrogenase (HSD) deficiency is an extremely rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by an defect in the HSD3B2 gene which encodes for the 3 beta-hydroxysteroid dehydrogenase enzyme, which is responsible for forming cortisol from 11b,17a,21-trihydroxypregnenolone. When the enzyme is not correctly produced, cortisol levels in the cell are lowered, and as cortisol is used in the production of other steroids, it may affect their levels as well. 3-beta-HSD deficiency is characterized by low levels of cortisol produced in the adrenal glands. Symptoms include abnormal genitalia for both males and females, as well as infertility. There is also a more severe salt-wasting form of this deficiency, characterized by dehydration. Treatment for 3-beta-HSD deficiency includes steroid replacement, as well as sex hormone replacement during puberty to allow proper development. Surgery can also be used to correct any genital abnormalities that may occur. It is estimated that 3-beta-HSD deficiency affects less than 1 in 1,000,000 individuals, with around 60 cases reported.
|
Creator: Ray Kruger Created On: December 19, 2022 at 16:39 Last Updated: December 19, 2022 at 16:39 |
PW122132View Pathway |
disease
27-Hydroxylase DeficiencyRattus norvegicus
Sterol 27-hydroxylase is a mitochondrial cytochrome P-450 species (CYP27) that catalyzes the first step in the degradation of steroid side chain in cholesterol to produce bile acids in the liver. When there are low concentrations of 27-Hydroxylase, patients will exhibit cerebrotendinous xanthomatosis, an autosomal recessive disorder characterized by the accumulation of cholestanol and cholesterol due to the inability to break down the lipids. The formation of xanthomas (deposits of lipids) in the nervous system and tendons will cause symptoms such as dementia, ataxia, and cataracts. Other symptoms may include damaged liver cells and body tissues.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:52 Last Updated: September 10, 2018 at 15:52 |
PW000697View Pathway |
disease
27-Hydroxylase DeficiencyHomo sapiens
Sterol 27-hydroxylase is a mitochondrial cytochrome P-450 species (CYP27) that catalyzes the first step in the degradation of steroid side chain in cholesterol to produce bile acids in the liver. When there are low concentrations of 27-Hydroxylase, patients will exhibit cerebrotendinous xanthomatosis, an autosomal recessive disorder characterized by the accumulation of cholestanol and cholesterol due to the inability to break down the lipids. The formation of xanthomas (deposits of lipids) in the nervous system and tendons will cause symptoms such as dementia, ataxia, and cataracts. Other symptoms may include damaged liver cells and body tissues.
|
Creator: WishartLab Created On: June 23, 2014 at 02:27 Last Updated: June 23, 2014 at 02:27 |
PW121908View Pathway |
disease
27-Hydroxylase DeficiencyMus musculus
Sterol 27-hydroxylase is a mitochondrial cytochrome P-450 species (CYP27) that catalyzes the first step in the degradation of steroid side chain in cholesterol to produce bile acids in the liver. When there are low concentrations of 27-Hydroxylase, patients will exhibit cerebrotendinous xanthomatosis, an autosomal recessive disorder characterized by the accumulation of cholestanol and cholesterol due to the inability to break down the lipids. The formation of xanthomas (deposits of lipids) in the nervous system and tendons will cause symptoms such as dementia, ataxia, and cataracts. Other symptoms may include damaged liver cells and body tissues.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:50 Last Updated: September 10, 2018 at 15:50 |
PW123978View Pathway |
physiological
2345Homo sapiens
|
Creator: Guest: Anonymous Created On: July 10, 2020 at 08:45 Last Updated: July 10, 2020 at 08:45 |
PW123809View Pathway |
disease
211Alloactinosynnema sp. L-07
|
Creator: Guest: Anonymous Created On: February 16, 2020 at 00:51 Last Updated: February 16, 2020 at 00:51 |
PW121896View Pathway |
disease
21-Hydroxylase Deficiency (CYP21)Mus musculus
Congenital adrenal hyperplasia (CAH) refers to any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the steps of biosynthesis of cortisol from cholesterol in the adrenal glands, also known as steroidogenesis. 21-hydroxylase deficiency, also known as CYP21 deficiency or CAH1, is an autosomal recessive disorder that accounts for the vast majority of cases of CAH. This deficiency affects cells in the adrenal cortex of the adrenal glands, and due to the deficiency in an enzyme used in many pathways. This prevents the completion of several hormone biosynthesis pathways, including those producing aldosterone and cortisol, and leads to a buildup of their precursors, including 17a-hydroxypregnenolone, which are then processed by the pathways that produce androgen hormones including testosterone.
This disorder can vary in severity, depending on the amount of functional enzyme present. The most severe form is known as the salt-wasting form of 21-hydroxylase, and is caused by a complete lack of functional enzyme. This form is called the salt-wasting form, as the lack of aldosterone produced leads to high levels of sodium excreted in the urine, causing infant blood volume to decrease. High potassium levels in blood are also often observed, but if properly diagnosed, saline solution and hydrocortisone can restore normal blood levels and sodium content. In addition, males are typically visually unaffected, but females often possess ambiguous genitalia due to the excess exposure to testosterone during development. The second most severe form is known as the simple virilising form, which does not involve the salt loss of the salt-wasting form, due to a partially functional 21-hydroxylase enzyme. However, the androgen hormones build up similarly, leading to females with some amount of virilisation, or some amount of male characteristics, including ambiguous genitalia. The third and least severe form, known as the non-classical or late onset form, has the highest function in 21-hydroxylase enzymes, and leads to the smallest buildup of androgen hormones. This means that females exhibit little to no virilisation at birth, but as they age can experience male-associated hair growth and baldness, as well as decreased fertility and menstruation irregularities. It can also lead to an early puberty in both males and females, though treatment can help prevent this if it is caught in time.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:50 Last Updated: September 10, 2018 at 15:50 |
PW122120View Pathway |
disease
21-Hydroxylase Deficiency (CYP21)Rattus norvegicus
Congenital adrenal hyperplasia (CAH) refers to any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the steps of biosynthesis of cortisol from cholesterol in the adrenal glands, also known as steroidogenesis. 21-hydroxylase deficiency, also known as CYP21 deficiency or CAH1, is an autosomal recessive disorder that accounts for the vast majority of cases of CAH. This deficiency affects cells in the adrenal cortex of the adrenal glands, and due to the deficiency in an enzyme used in many pathways. This prevents the completion of several hormone biosynthesis pathways, including those producing aldosterone and cortisol, and leads to a buildup of their precursors, including 17a-hydroxypregnenolone, which are then processed by the pathways that produce androgen hormones including testosterone.
This disorder can vary in severity, depending on the amount of functional enzyme present. The most severe form is known as the salt-wasting form of 21-hydroxylase, and is caused by a complete lack of functional enzyme. This form is called the salt-wasting form, as the lack of aldosterone produced leads to high levels of sodium excreted in the urine, causing infant blood volume to decrease. High potassium levels in blood are also often observed, but if properly diagnosed, saline solution and hydrocortisone can restore normal blood levels and sodium content. In addition, males are typically visually unaffected, but females often possess ambiguous genitalia due to the excess exposure to testosterone during development. The second most severe form is known as the simple virilising form, which does not involve the salt loss of the salt-wasting form, due to a partially functional 21-hydroxylase enzyme. However, the androgen hormones build up similarly, leading to females with some amount of virilisation, or some amount of male characteristics, including ambiguous genitalia. The third and least severe form, known as the non-classical or late onset form, has the highest function in 21-hydroxylase enzymes, and leads to the smallest buildup of androgen hormones. This means that females exhibit little to no virilisation at birth, but as they age can experience male-associated hair growth and baldness, as well as decreased fertility and menstruation irregularities. It can also lead to an early puberty in both males and females, though treatment can help prevent this if it is caught in time.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:52 Last Updated: September 10, 2018 at 15:52 |