Loader

Pathways

PathWhiz ID Pathway Meta Data

PW127348

Pw127348 View Pathway
disease

17-beta Hydroxysteroid Dehydrogenase III Deficiency

Homo sapiens
17-beta hydroxysteroid dehydrogenase III deficiency, also known as 17-KSR deficiency or male pseudohermaphroditism with gynecomastia (MPH), is as rare inborn error of metabolism (IEM) and autosomal recessive disorder of the androgen and estrogen metabolism pathway. It is caused by a mutation in the HSD17B3 gene, which encodes the enzyme testosterone 17-beta-dehydrogenase 3, which is responsible for catalyzing the reversible formation of androstenedione from testosterone. This leads to an accumulation of androstenedione and dehydroepiandrosterone in the body, as well as a lack of testosterone produced. 17-KSR deficiency is characterized by an absence of testosterone in the testis until puberty, where testosterone is produced outside of the gonads. Symptoms include infertility and external female genitalia until puberty, when secondary male sex characteristics occur, as well as gynecomastia. Due to this, many individuals with this disorder are raised as female despite being genetically male, until puberty. Treatment can include removal of testes before puberty, preventing any masculinization at puberty, as well as surgical treatment of genitalia. However, there is no known treatment for restoring the fertility of affected individuals. It is estimated that 17-KSR deficiency affects 1 in 150,000 individuals in The Netherlands, without much information for the rest of the world.

PW000542

Pw000542 View Pathway
disease

17-alpha-Hydroxylase Deficiency (CYP17)

Homo sapiens
17-alpha-hydroxylase deficiency, also known as congenital adrenal hyperplasia (CAH) due to 17-alpha-hydroxylase deficiency or congenital adrenal hyperplasia type 5, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by a mutation in the CYP17A1 gene which encodes the enzyme steroid 17-alpha-hydroxylase. This enzyme hydroxylates both progesterone and pregnenolone into 17-hydroxyprogesterone and 17a-hydroxypregnenolone respectively in the mitochondria, as well as hydroxylating 21-deoxycortisol to 11b-hydroxyprogesterone within the endoplasmic reticulum. When mutated, it leads to an accumulation of pregnenolone, progesterone, deoxycorticosterone and 11-dehydrocorticosterone throughout the cell. 17-alpha hydroxylase deficiency is characterized by a deficiency of sex steroids, as well as glucocorticoids. Symptoms include male undervirilization, as well as lack of development during puberty including amenorrhea for females. Low levels of potassium in the blood due to the increased levels of mineralocorticoids can occur, as well as hypertension. Treatment with dexamethasone has been able to normalize blood pressure and blood potassium levels. It is estimated that 17-alpha-hydroxylase deficiency affects 1 in 1,000,000 individuals.

PW121886

Pw121886 View Pathway
disease

17-alpha-Hydroxylase Deficiency (CYP17)

Mus musculus
17-alpha-hydroxylase deficiency, also known as congenital adrenal hyperplasia (CAH) due to 17-alpha-hydroxylase deficiency or congenital adrenal hyperplasia type 5, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by a mutation in the CYP17A1 gene which encodes the enzyme steroid 17-alpha-hydroxylase. This enzyme hydroxylates both progesterone and pregnenolone into 17-hydroxyprogesterone and 17a-hydroxypregnenolone respectively in the mitochondria, as well as hydroxylating 21-deoxycortisol to 11b-hydroxyprogesterone within the endoplasmic reticulum. When mutated, it leads to an accumulation of pregnenolone, progesterone, deoxycorticosterone and 11-dehydrocorticosterone throughout the cell. 17-alpha hydroxylase deficiency is characterized by a deficiency of sex steroids, as well as glucocorticoids. Symptoms include male undervirilization, as well as lack of development during puberty including amenorrhea for females. Low levels of potassium in the blood due to the increased levels of mineralocorticoids can occur, as well as hypertension. Treatment with dexamethasone has been able to normalize blood pressure and blood potassium levels. It is estimated that 17-alpha-hydroxylase deficiency affects 1 in 1,000,000 individuals.

PW122110

Pw122110 View Pathway
disease

17-alpha-Hydroxylase Deficiency (CYP17)

Rattus norvegicus
17-alpha-hydroxylase deficiency, also known as congenital adrenal hyperplasia (CAH) due to 17-alpha-hydroxylase deficiency or congenital adrenal hyperplasia type 5, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by a mutation in the CYP17A1 gene which encodes the enzyme steroid 17-alpha-hydroxylase. This enzyme hydroxylates both progesterone and pregnenolone into 17-hydroxyprogesterone and 17a-hydroxypregnenolone respectively in the mitochondria, as well as hydroxylating 21-deoxycortisol to 11b-hydroxyprogesterone within the endoplasmic reticulum. When mutated, it leads to an accumulation of pregnenolone, progesterone, deoxycorticosterone and 11-dehydrocorticosterone throughout the cell. 17-alpha hydroxylase deficiency is characterized by a deficiency of sex steroids, as well as glucocorticoids. Symptoms include male undervirilization, as well as lack of development during puberty including amenorrhea for females. Low levels of potassium in the blood due to the increased levels of mineralocorticoids can occur, as well as hypertension. Treatment with dexamethasone has been able to normalize blood pressure and blood potassium levels. It is estimated that 17-alpha-hydroxylase deficiency affects 1 in 1,000,000 individuals.

PW147011

Pw147011 View Pathway
metabolic

13-cis-Retinoic acid Drug Metabolism Pathway

Homo sapiens

PW122336

Pw122336 View Pathway
metabolic

11-cis-3-Hydroxyretinal Biosynthesis

Drosophila melanogaster
(3S)-11-cis-3-hydroxyretinal is one of three chromophores, which then associate with rhodopsins. Specifically, this chromophore associates with the Rh1 rhodopsin, a blue/green sensitive visual pigment found in 6 of the 8 photoreceptor cells in Drosophila melanogaster. The production of this chromophore begins with zeaxanthin obtained from Drosophila’s dietary sources. This lipid is broken down into (3R)-11-cis-3-hydroxyretinal and (3R)-all-trans-3-hydroxyretinal by a carotenoid isomerooxygenase. The (3R)-cis-3-hydroxyretinal is then attached to a retinoid binding protein, and this complex goes on to be used in the visual cycle of the organism. However, (3R)-all-trans-3-hydroxyretinal must be further processed. It too binds to a retinoid binding protein that will remain unchanged through the rest of the reactions. First, this complex will have a hydrogen added by a photoreceptor dehydrogenase in order to form (3R)-all-trans-3-hydroxyretinol, and then a photoreceptor epimerase will invert its stereochemistry to form (3S)-all-trans-3-hydroxyretinol. From here, an unknown protein, an oxidoreductase that transposes C=C bonds, will form (3S)-11-cis-3-hydroxyretinol. Finally, another photoreceptor dehydrogenase removes a hydrogen from that complex, forming the final product, (3S)-11-cis-3-hydroxyretinal. This complex then joins (3R)-11-cis-3-hydroxyretinal in the visual cycle.

PW000551

Pw000551 View Pathway
disease

11-beta-Hydroxylase Deficiency (CYP11B1)

Homo sapiens
11-beta-Hydroxylase Deficiency, also called congenital adrenal hyperplasia (CAH), is an autosomal recessive disorder and caused by a defective 11-beta-hydroxylase. 11-beta-hydroxylase catalyzes the conversion of cortexolone into cortisol which is useful for maintaining blood sugar levels and suppressing inflammation. This disorder is characterized by a large accumulation of cortexolone in the endoplasmic reticulum (ER). Symptoms of the disorder include abnormality of hair growth rate and menstrual cycle. It is estimated that 11-beta-hydroxylase deficiency affects 1 in 100,000 to 200,000 newborns.

PW122119

Pw122119 View Pathway
disease

11-beta-Hydroxylase Deficiency (CYP11B1)

Rattus norvegicus
11-beta-Hydroxylase Deficiency, also called congenital adrenal hyperplasia (CAH), is an autosomal recessive disorder and caused by a defective 11-beta-hydroxylase. 11-beta-hydroxylase catalyzes the conversion of cortexolone into cortisol which is useful for maintaining blood sugar levels and suppressing inflammation. This disorder is characterized by a large accumulation of cortexolone in the endoplasmic reticulum (ER). Symptoms of the disorder include abnormality of hair growth rate and menstrual cycle. It is estimated that 11-beta-hydroxylase deficiency affects 1 in 100,000 to 200,000 newborns.

PW121895

Pw121895 View Pathway
disease

11-beta-Hydroxylase Deficiency (CYP11B1)

Mus musculus
11-beta-Hydroxylase Deficiency, also called congenital adrenal hyperplasia (CAH), is an autosomal recessive disorder and caused by a defective 11-beta-hydroxylase. 11-beta-hydroxylase catalyzes the conversion of cortexolone into cortisol which is useful for maintaining blood sugar levels and suppressing inflammation. This disorder is characterized by a large accumulation of cortexolone in the endoplasmic reticulum (ER). Symptoms of the disorder include abnormality of hair growth rate and menstrual cycle. It is estimated that 11-beta-hydroxylase deficiency affects 1 in 100,000 to 200,000 newborns.

PW127367

Pw127367 View Pathway
disease

11-beta-Hydroxylase Deficiency (CYP11B1)

Homo sapiens
11-beta-Hydroxylase Deficiency, also called congenital adrenal hyperplasia (CAH), is an autosomal recessive disorder and caused by a defective 11-beta-hydroxylase. 11-beta-hydroxylase catalyzes the conversion of cortexolone into cortisol which is useful for maintaining blood sugar levels and suppressing inflammation. This disorder is characterized by a large accumulation of cortexolone in the endoplasmic reticulum (ER). Symptoms of the disorder include abnormality of hair growth rate and menstrual cycle. It is estimated that 11-beta-hydroxylase deficiency affects 1 in 100,000 to 200,000 newborns.