PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW124102View Pathway |
signaling
2-AG on CB1Homo sapiens
2-Arachidoylglycerol acts as a full agonist of both CB1 and CB2 receptors. Here, its numerous effects on CB1 receptors are presented, including a route of its biosynthesis. Within the postsynaptic neuron, PIP2 is hydrolyzed to form a diacylglycerol molecule, which is then further hydrolyzed with the membranous enzyme DAGLa to form 2-AG. The completed 2-AG molecule is then released from the postsynaptic membrane and acts retroactively on CB1 receptors located on the presynaptic membrane. Acting as a G-protein coupled receptor, CB1 directly activates mitogen activated protein kinase (MAPK) and nitric oxide synthase. The activation of MAPK induces its own signalling pathway, which regulates mitosis and the cellular cycle through translation and transcription. Nitric oxide synthase is activated to produce nitric oxide, which has a number of roles in neurons, most notable of which is promoting neuroplasticity through its effect on potassium channels. Nitric oxide also activates soluble guanylyl cyclase, which mediates calcium channels through its production of cGMP. Apart from its activating action, the activated CB1 receptor also inhibits both calcium channels and forskolin activated adenylate cyclase. The inhibition of calcium channels works directly to block the flow of calcium ions into the presynaptic neuron, while the inhibition of adenylate cyclase decreases levels of cAMP within the neuron, leading to activation of potassium channels and focal adhesion kinase (FAK). FAK is involved in intracellular signalling that promotes cell migration and adhesion, while potassium channels work to pump potassium ions out of the presynaptic neuron and into the synaptic cleft.
|
Creator: Alyssah Created On: August 21, 2020 at 16:43 Last Updated: August 21, 2020 at 16:43 |
PW000751View Pathway |
2,3-Dihydroxybenzoate BiosynthesisEscherichia coli
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: miguel ramirez Created On: January 13, 2015 at 15:49 Last Updated: January 13, 2015 at 15:49 |
PW122554View Pathway |
2,3-Dihydroxybenzoate BiosynthesisPseudomonas aeruginosa
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Ana Marcu Created On: August 12, 2019 at 16:57 Last Updated: August 12, 2019 at 16:57 |
PW064418View Pathway |
2,3-Butanediol (2,3-BDO)Escherichia coli (strain K12)
|
Creator: Guest: Anonymous Created On: October 29, 2017 at 02:48 Last Updated: October 29, 2017 at 02:48 |
PW064417View Pathway |
2,3-ButanediolEscherichia coli (strain K12)
Metabolic pathway for 2,3-Butanediol synthesis in E. coli AV12 by expresing an sinthetic operon.
|
Creator: Guest: Anonymous Created On: October 29, 2017 at 01:54 Last Updated: October 29, 2017 at 01:54 |
PW146797View Pathway |
drug action
2,2'-Dibenzothiazyl disulfide Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 19:03 Last Updated: October 07, 2023 at 19:03 |
PW132445View Pathway |
2,2'-Dibenzothiazyl disulfide Drug MetabolismHomo sapiens
2,2'-Dibenzothiazyl disulfide is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. 2,2'-Dibenzothiazyl disulfide passes through the liver and is then excreted from the body mainly through the kidney.
|
Creator: Ray Kruger Created On: September 21, 2023 at 21:49 Last Updated: September 21, 2023 at 21:49 |
PW147010View Pathway |
17a-Ethynylestradiol Drug Metabolism PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 10, 2023 at 13:38 Last Updated: October 10, 2023 at 13:38 |
PW000059View Pathway |
disease
17-beta Hydroxysteroid Dehydrogenase III DeficiencyHomo sapiens
17-beta hydroxysteroid dehydrogenase III deficiency, also known as 17-KSR deficiency or male pseudohermaphroditism with gynecomastia (MPH), is as rare inborn error of metabolism (IEM) and autosomal recessive disorder of the androgen and estrogen metabolism pathway. It is caused by a mutation in the HSD17B3 gene, which encodes the enzyme testosterone 17-beta-dehydrogenase 3, which is responsible for catalyzing the reversible formation of androstenedione from testosterone. This leads to an accumulation of androstenedione and dehydroepiandrosterone in the body, as well as a lack of testosterone produced. 17-KSR deficiency is characterized by an absence of testosterone in the testis until puberty, where testosterone is produced outside of the gonads. Symptoms include infertility and external female genitalia until puberty, when secondary male sex characteristics occur, as well as gynecomastia. Due to this, many individuals with this disorder are raised as female despite being genetically male, until puberty. Treatment can include removal of testes before puberty, preventing any masculinization at puberty, as well as surgical treatment of genitalia. However, there is no known treatment for restoring the fertility of affected individuals. It is estimated that 17-KSR deficiency affects 1 in 150,000 individuals in The Netherlands, without much information for the rest of the world.
|
Creator: WishartLab Created On: August 01, 2013 at 15:52 Last Updated: August 01, 2013 at 15:52 |
PW121688View Pathway |
disease
17-beta Hydroxysteroid Dehydrogenase III DeficiencyMus musculus
17-beta hydroxysteroid dehydrogenase III deficiency, also known as 17-KSR deficiency or male pseudohermaphroditism with gynecomastia (MPH), is as rare inborn error of metabolism (IEM) and autosomal recessive disorder of the androgen and estrogen metabolism pathway. It is caused by a mutation in the HSD17B3 gene, which encodes the enzyme testosterone 17-beta-dehydrogenase 3, which is responsible for catalyzing the reversible formation of androstenedione from testosterone. This leads to an accumulation of androstenedione and dehydroepiandrosterone in the body, as well as a lack of testosterone produced. 17-KSR deficiency is characterized by an absence of testosterone in the testis until puberty, where testosterone is produced outside of the gonads. Symptoms include infertility and external female genitalia until puberty, when secondary male sex characteristics occur, as well as gynecomastia. Due to this, many individuals with this disorder are raised as female despite being genetically male, until puberty. Treatment can include removal of testes before puberty, preventing any masculinization at puberty, as well as surgical treatment of genitalia. However, there is no known treatment for restoring the fertility of affected individuals. It is estimated that 17-KSR deficiency affects 1 in 150,000 individuals in The Netherlands, without much information for the rest of the world.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:49 Last Updated: September 10, 2018 at 15:49 |