Loader

Pathways

PathWhiz ID Pathway Meta Data

PW146491

Pw146491 View Pathway
drug action

Letermovir Drug Metabolism Action Pathway

Homo sapiens

PW176335

Pw176335 View Pathway
metabolic

Letermovir Predicted Metabolism Pathway

Homo sapiens
Metabolites of sildenafil are predicted with biotransformer.

PW145104

Pw145104 View Pathway
drug action

Letrozole Drug Metabolism Action Pathway

Homo sapiens

PW000811

Pw000811 View Pathway
metabolic

Leucine Biosynthesis

Escherichia coli
Leucine biosynthesis involves a five-step conversion process starting with the valine precursor 2-keto-isovalerate interacting with acetyl-CoA and water through a 2-isopropylmalate synthase resulting in Coenzyme A, hydrogen Ion and 2-isopropylmalic acid. The latter compound reacts with isopropylmalate isomerase which dehydrates the compound resulting in a Isopropylmaleate. This compound reacts with water through a isopropylmalate isomerase resulting in 3-isopropylmalate. This compound interacts with a NAD-driven D-malate / 3-isopropylmalate dehydrogenase results in 2-isopropyl-3-oxosuccinate. This compound interacts spontaneously with hydrogen resulting in the release of carbon dioxide and ketoleucine. Ketoleucine interacts in a reversible reaction with L-glutamic acid through a branched-chain amino-acid aminotransferase resulting in Oxoglutaric acid and L-leucine. L-leucine can then be exported outside the cytoplasm through a transporter: L-amino acid efflux transporter. In the final step, ketoleucine can be catalyzed to form L-leucine by branched-chain amino-acid aminotransferase (IlvE) and tyrosine aminotransferase (TryB). L-Glutamic acid can also be transformed into oxoglutaric acid by these two enzymes. Tyrosine aminotransferase can be suppressed by lecuine, and inhibited by 2-keto-isovarlerate and its end product, tyrosine. 2-ketoisocaproate can not be introduced if 2-keto-isovarlerate inhibit TyrB and IlvE is absent.

PW122595

Pw122595 View Pathway
metabolic

Leucine Biosynthesis

Pseudomonas aeruginosa
Leucine biosynthesis involves a five-step conversion process starting with the valine precursor 2-keto-isovalerate interacting with acetyl-CoA and water through a 2-isopropylmalate synthase resulting in Coenzyme A, hydrogen Ion and 2-isopropylmalic acid. The latter compound reacts with isopropylmalate isomerase which dehydrates the compound resulting in a Isopropylmaleate. This compound reacts with water through a isopropylmalate isomerase resulting in 3-isopropylmalate. This compound interacts with a NAD-driven D-malate / 3-isopropylmalate dehydrogenase results in 2-isopropyl-3-oxosuccinate. This compound interacts spontaneously with hydrogen resulting in the release of carbon dioxide and ketoleucine. Ketoleucine interacts in a reversible reaction with L-glutamic acid through a branched-chain amino-acid aminotransferase resulting in Oxoglutaric acid and L-leucine. L-leucine can then be exported outside the cytoplasm through a transporter: L-amino acid efflux transporter. In the final step, ketoleucine can be catalyzed to form L-leucine by branched-chain amino-acid aminotransferase (IlvE) and tyrosine aminotransferase (TryB). L-Glutamic acid can also be transformed into oxoglutaric acid by these two enzymes. Tyrosine aminotransferase can be suppressed by lecuine, and inhibited by 2-keto-isovarlerate and its end product, tyrosine. 2-ketoisocaproate can not be introduced if 2-keto-isovarlerate inhibit TyrB and IlvE is absent.

PW002475

Pw002475 View Pathway
metabolic

Leucine Biosynthesis

Saccharomyces cerevisiae
Leucine biosynthesis involves a five-step conversion process starting with the valine precursor 2-keto-isovalerate interacting with acetyl-CoA and water through a 2-isopropylmalate synthase resulting in Coenzyme A, hydrogen Ion and 2-isopropylmalic acid. The latter compound reacts with isopropylmalate isomerase which dehydrates the compound resulting in a Isopropylmaleate. This compound reacts with water through a isopropylmalate isomerase resulting in 3-isopropylmalate. This compound interacts with a NAD-driven D-malate / 3-isopropylmalate dehydrogenase results in 2-isopropyl-3-oxosuccinate. This compound interacts spontaneously with hydrogen resulting in the release of carbon dioxide and ketoleucine. Ketoleucine interacts in a reversible reaction with L-glutamic acid through a branched-chain amino-acid aminotransferase resulting in Oxoglutaric acid and L-leucine. L-leucine can then be exported outside the cytoplasm through a transporter: L-amino acid efflux transporter. In the final step, ketoleucine can be catalyzed to form L-leucine by branched-chain amino-acid aminotransferase (IlvE) and tyrosine aminotransferase (TryB). L-Glutamic acid can also be transformed into oxoglutaric acid by these two enzymes. Tyrosine aminotransferase can be suppressed by lecuine, and inhibited by 2-keto-isovarlerate and its end product, tyrosine. 2-ketoisocaproate can not be introduced if 2-keto-isovarlerate inhibit TyrB and IlvE is absent.

PW002540

Pw002540 View Pathway
metabolic

Leucine Biosynthesis

Arabidopsis thaliana
Leucine biosynthesis involves a five-step conversion process starting with the valine precursor 2-keto-isovalerate interacting with acetyl-CoA and water through a 2-isopropylmalate synthase resulting in Coenzyme A, hydrogen Ion and 2-isopropylmalic acid. The latter compound reacts with isopropylmalate isomerase which dehydrates the compound resulting in a Isopropylmaleate. This compound reacts with water through a isopropylmalate isomerase resulting in 3-isopropylmalate. This compound interacts with a NAD-driven D-malate / 3-isopropylmalate dehydrogenase results in 2-isopropyl-3-oxosuccinate. This compound interacts spontaneously with hydrogen resulting in the release of carbon dioxide and ketoleucine. Ketoleucine interacts in a reversible reaction with L-glutamic acid through a branched-chain amino-acid aminotransferase resulting in Oxoglutaric acid and L-leucine. L-leucine can then be exported outside the cytoplasm through a transporter: L-amino acid efflux transporter. In the final step, ketoleucine can be catalyzed to form L-leucine by branched-chain amino-acid aminotransferase (IlvE) and tyrosine aminotransferase (TryB). L-Glutamic acid can also be transformed into oxoglutaric acid by these two enzymes. Tyrosine aminotransferase can be suppressed by lecuine, and inhibited by 2-keto-isovarlerate and its end product, tyrosine. 2-ketoisocaproate can not be introduced if 2-keto-isovarlerate inhibit TyrB and IlvE is absent.

PW002490

Pw002490 View Pathway
metabolic

Leucine Degradation

Saccharomyces cerevisiae
The degradation of L-leucine starts either in the mitochondria or the cytosol. L-leucine reacts with 2-oxoglutarate through a branch-chain amino acid aminotransferase resulting in the release of ketoleucine and glutamate. The latter compound reacts with ketoisocaproate decarboxylase resulting in the release of carbon dioxide and 3-methylbutanal. The latter compound can then be turned into 3-methylbutanol through a alcohol dehydrogenase

PW013301

Pw013301 View Pathway
metabolic

Leucine degradation

Bacteria
I would like to test Pathwhiz

PW002541

Pw002541 View Pathway
metabolic

Leucine Degradation

Arabidopsis thaliana
The degradation of L-leucine starts either in the mitochondria, the cytosol or the chloroplast. L-leucine reacts with 2-oxoglutarate through a branch-chain amino acid aminotransferase resulting in the release of ketoleucine and glutamate. Ketoleucine reacts with coenzyme a through a NAD dependent branched chain keto-acid dehydrogenase complex resulting in the release of NADH, carbon dioxide and isovaleryl-CoA. Isovaleryl-CoA reacts with an oxidized electron flavoprotein resulting in the release of a reduced flavoprotein and a methylcrotonyl-CoA. The latter reacts with ATP and hydrogen carbonate through a 3-methylcrotonyl-CoA carboxylase resulting in the release of phosphate, ADP, hydrogen ion and 3-methylglutaconyl-CoA. The latter compound reacts with water through a methylglutaconyl-CoA hydratase resulting in the release of hydroxy-3-methylglutaryl-CoA. The latter reacts with a hydroxymethylglutaryl-CoA lyase resulting in the release of acetyl-CoA and acetoacetate.