Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 131 - 140 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0142963

Pw144631 View Pathway

Vancomycin Drug Metabolism Action Pathway

Drug Action

SMP0145052

Pw146720 View Pathway

Vanadium Drug Metabolism Action Pathway

Drug Action

SMP0142640

Pw144308 View Pathway

Valsartan Drug Metabolism Action Pathway

Drug Action

SMP0124970

Pw126477 View Pathway

Valsartan Action Pathway (New)

Valsartan is angiotensin receptor blocker (ARB) which block the action of angiotensin II by binding to the type 1 angiotensin II receptor. Angiotensin II is a critical circulating peptide hormone that has powerful vasoconstrictive effects and increases blood pressure. Valsartan is indicated for the treatment of hypertension to reduce the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. It is also indicated for the treatment of heart failure (NYHA class II-IV) and for left ventricular dysfunction or failure after myocardial infarction when the use of an angiotensin-converting enzyme inhibitor (ACEI) is not appropriate. Angiotensin II has many vasoconstrictive effects by binding to angiotensin II type 1 receptors (AT1) in blood vessels, kidneys, hypothalamus, and posterior pituitary. In blood vessels AT1 receptors cause vasoconstriction in the tunica media layer of smooth muscle surrounding blood vessels increasing blood pressure. Blocking this AT1 receptor lowers the constriction of these blood vessels. AT1 receptors in the kidney are responsible for the production of aldosterone which increases salt and water retention which increases blood volume. Blocking AT1 receptors reduces aldosterone production allowing water retention to not increase. AT1 receptors in the hypothalamus are on astrocytes which inhibit the excitatory amino acid transporter 3 from up-taking glutamate back into astrocytes. Glutamate is responsible for the activation of NMDA receptors on paraventricular nucleus neurons (PVN neurons) that lead to thirst sensation. Since AT1 receptors are blocked, the inhibition of the uptake transporter is not limited decreasing the amount of glutamate activating NMDA on PVN neurons that makes the individual crave drinking less. This lowers the blood volume as well. Lastly, the AT1 receptors on posterior pituitary gland are responsible for the release of vasopressin. Vasopressin is an anti-diuretic hormone that cases water reabsorption in the kidney as well as causing smooth muscle contraction in blood vessels increasing blood pressure. Lowering angiotensin II action on activating vasopressin release inhibits blood pressure from increasing. All these effects of valsartan contribute to an overall lowered blood pressure.
Drug Action

SMP0000165

Pw000285 View Pathway

Valsartan Action Pathway

Valsartan (also named Diovan) is an antagonist of angiotensin II receptor blockers (ARBs). Valsartan competes with angiotensin II to bind type-1 angiotensin II receptor (AT1) in many tissues (e.g. vascular smooth muscle, the adrenal glands, etc.) to prevent increasing sodium, water reabsorption and peripheral resistance (that will lead to increasing blood pressure) via aldosterone secretion that is caused by angiotensin II. Therefore, action of valsartan binding to AT1 will result in decreasing blood pressure. For more information on the effects of aldosterone on electrolyte and water excretion, refer to the description of the \spironolactone\:http://pathman.smpdb.ca/pathways/SMP00134/pathway or \triamterene\:http://pathman.smpdb.ca/pathways/SMP00132/pathway pathway, which describes the mechanism of direct aldosterone antagonists. Valsartan is an effective agent for reducing blood pressure and may be used to treat essential hypertension and heart failure.
Drug Action

SMP0142843

Pw144511 View Pathway

Valrubicin Drug Metabolism Action Pathway

Drug Action

SMP0126130

Pw127712 View Pathway

Valrubicin Action Pathway

Valrubicin (N-trifluoroacetyladriamycin-14-valerate), also known as Valstar, is a chemotherapy drug from the anthracycline class. It is a semisynthetic analog of doxorubicin. Valrubicin has a more rapid uptake in the tumors than doxorubicin. Moreover, it does not have the preferential negative ion binding in cell membranes thought to be the cause for the cardiac toxicity of doxorubicin. This drug is used to treat BCG-resistant bladder carcinoma and is administered directly in the bladder (intravesical). Valrubicin affects a variety of interrelated biological functions, mostly the one involving the nucleic acid metabolism. It does DNA intercalation, then, it inhibits the incorporation of nucleosides into nucleic acids, causes extensive chromosomal damage, and arrests the cell cycle in the G2 phase. A principal mechanism of its action, mediated by valrubicin metabolites, is interference with the normal DNA breaking-resealing action of DNA topoisomerase II. This drug inhibits the DNA topoisomerase by binding to its 2-alpha part. This action cause DNA strand breaks, partial unwinding/uncoiling of DNA, and inhibition of DNA and RNA synthesis. DNA damage leads to programmed cell death (apoptosis) of the cancer cells, preventing the growth and proliferation of cancer in patients.
Drug Action

SMP0142772

Pw144440 View Pathway

Valproic acid Drug Metabolism Action Pathway

Drug Action

SMP0145030

Pw146698 View Pathway

Valproate bismuth Drug Metabolism Action Pathway

Drug Action
  • Valproate bismuth

SMP0143809

Pw145477 View Pathway

Valganciclovir Drug Metabolism Action Pathway

Drug Action
Showing 131 - 140 of 4295 pathways