Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 71 - 80 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0000083

Pw000128 View Pathway

Acetylsalicylic Acid Action Pathway

Acetylsalicylic acid, also known as ASA or aspirin, belongs to a class of drugs known as non-steroidal anti-inflammatory drugs (NSAIDs). In addition to its anti-inflammatory properties, aspirin also acts as an analgesic, antipyretic and antithrombotic agent. Like most other NSAIDs, aspirin exerts its therapeutic effects by inhibiting prostaglandin G/H synthase 1 and 2, better known as cyclooxygenase-1 and -2 or simply COX-1 and -2. COX-1 and -2 catalyze the conversion of arachidonic acid to prostaglandin G2 and prostaglandin G2 to prostaglandin H2. Prostaglandin H2 is the precursor to a number of other prostaglandins, such as prostaglandin E2, involved in pain, fever and inflammation. The antipyretic properties of aspirin arise from inhibition of prostaglandin E2 synthesis in the preoptic region of the hypothalamus. Interference with adhesion and migration of granulocytes, polymorphonuclear leukocytes and macrophages at sites of inflammation account for its anti-inflammatory effects. The analgesic effects of aspirin likely occur due to peripheral action at the site of injury and possibly within the CNS. Aspirin is unique from other NSAIDs in that it is an irreversible COX inhibitor. Aspirin irreversibly acetylates a serine side chain of COX rendering the enzyme inactive. Enzyme activity can only be regained by production of more cyclooxygenase. This unique property of aspirin and its higher selectivity for COX-1 over COX-2 makes it an effective antiplatelet agent. Platelets contain COX-1, a key enzyme in the production thromboxane A2 (TXA2), which is a potent inducer of platelet aggregation. Since platelets lack the ability to make more enzyme, TXA2 production is inhibited for the lifetime of the platelet (approximately 8 – 12 days). Aspirin is commonly used at low doses to prevent cardiovascular events such as strokes and heart attacks. At higher doses, aspirin may be used as an analgesic, anti-inflammatory and antipyretic. Aspirin may cause gastric irritation and bleeding by inhibiting the synthesis of prostaglandins that enhance and maintain the protective gastric mucous layer.
Drug Action

SMP0124628

Pw126112 View Pathway

Acetylsalicylic Acid Action Pathway (New)

Aspirin (acetylsalicylic acid) is an NSAID used to treat pain, fever, inflammation, migraines, and reducing the risk of major adverse cardiovascular events. Aspirin possesses anti-inflammatory, analgesic and antipyretic activity. It targets the prostaglandin G/H synthase-1 (COX-1) and prostaglandin G/H synthase-2 (COX-2) in the cyclooxygenase pathway. The cyclooxygenase pathway begins in the cytosol with phospholipids being converted into arachidonic acid by the action of phospholipase A2. The rest of the pathway occurs on the endoplasmic reticulum membrane, where prostaglandin G/H synthase 1 & 2 converts arachidonic acid into prostaglandin H2. Prostaglandin H2 can either be converted into thromboxane A2 via thromboxane A synthase, prostacyclin/prostaglandin I2 via prostacyclin synthase or prostaglandin E2 via prostaglandin E synthase. COX-2 is an inducible enzyme, and during inflammation, it is responsible for prostaglandin synthesis. It leads to the formation of prostaglandin E2 which is responsible for contributing to the inflammatory response by activating immune cells and for increasing pain sensation by acting on pain fibers. Aspirin inhibits the action of COX-1 and COX-2 on the endoplasmic reticulum membrane. This reduces the formation of prostaglandin H2 and therefore, prostaglandin E2 (PGE2). The low concentration of prostaglandin E2 attenuates the effect it has on stimulating immune cells and pain fibers, consequently reducing inflammation and pain. Fever is triggered by inflammatory and infectious diseases. Cytokines are produced in the central nervous system (CNS) during an inflammatory response. These cytokines induce COX-2 production that increases the synthesis of prostaglandin, specifically prostaglandin E2 which adjusts hypothalamic temperature control by increasing heat production. Because aspirin decreases PGE2 in the CNS, it has an antipyretic effect. Antipyretic effects results in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation.
Drug Action

SMP0126190

Missing View Pathway

Acetylsalicylic acid metabolism

Acetylsalicylic acid (ASA) is an analgesic, antipyretic, anti-inflammatory and anti-platelet agent. ASA, non selectively inhibits cyclooxygenase I (cox 1), at higher doses COX 2 and thromboxane A2. ASA suppresses the synthesis of gastric mucosa protective prostaglandins, hence its propensity for drug induced gastrointestinal ulcers and ulcerative complications.
Drug Action

SMP0144273

Pw145941 View Pathway

Acipimox Drug Metabolism Action Pathway

Drug Action
  • Acipimox

SMP0142915

Pw144583 View Pathway

Acitretin Drug Metabolism Action Pathway

Drug Action

SMP0144208

Pw145876 View Pathway

Aclidinium Drug Metabolism Action Pathway

Drug Action
  • Aclidinium

SMP0144501

Pw146169 View Pathway

Acrivastine Drug Metabolism Action Pathway

Drug Action

SMP0174915

Pw176601 View Pathway

Acrivastine H1 Antihistamine Smooth Muscle Relaxation Action Pathway

Acrivastine is an antihistamine agent used for the symptomatic relief of seasonal allergic rhinitis such as sneezing, rhinorrhea, pruritus, lacrimation, and nasal congestion. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Acrivastine also inhibits the H1 histamine receptor on bronchiole smooth muscle myocytes. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin.Calcium bound calmodulin is required for the activation of myosin light chain kinase. This prevents the phosphorylation of myosin light chain 3, causing an accumulation of myosin light chain 3. This causes muscle relaxation, opening up the bronchioles in the lungs, making breathing easier.
Drug Action

SMP0059881

Pw060826 View Pathway

Acrivastine H1-Antihistamine Action

Acrivastine is a second-generation alkylamine H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Reducing the activity of the NF-κB immune response transcription factor through the phospholipase C and the phosphatidylinositol (PIP2) signalling pathways also decreases antigen presentation and the expression of pro-inflammatory cytokines, cell adhesion molecules, and chemotactic factors. Furthermore, lowering calcium ion concentration leads to increased mast cell stability which reduces further histamine release. First-generation antihistamines readily cross the blood-brain barrier and cause sedation and other adverse central nervous system (CNS) effects (e.g. nervousness and insomnia). Second-generation antihistamines are more selective for H1-receptors of the peripheral nervous system (PNS) and do not cross the blood-brain barrier. Consequently, these newer drugs elicit fewer adverse drug reactions.
Drug Action

SMP0175007

Pw176694 View Pathway

Acrivastine H1-Antihistamine Blood Vessel Constriction Action Pathway

Acrivastine is an antihistamine agent used for the symptomatic relief of seasonal allergic rhinitis such as sneezing, rhinorrhea, pruritus, lacrimation, and nasal congestion. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Acrivastine inhibits the H1 histamine receptor on blood vessel endothelial cells. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin. Calcium bound calmodulin is required for the activation of the calmodulin-binding domain of nitric oxide synthase. The inhibition of nitric oxide synthesis prevents the activation of myosin light chain phosphatase. This causes an accumulation of myosin light chain-phosphate which causes the muscle to contract and the blood vessel to constrict, decreasing the swelling and fluid leakage from the blood vessels caused by allergens.
Drug Action
Showing 71 - 80 of 4619 pathways