Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.

Filter by Pathway Type:

Showing 1 - 10 of 7 pathways
SMPDB ID Pathway Chemical Compounds Proteins


Pw000563 View Pathway

Angiotensin Metabolism

Angiotensin is a peptide hormone that causes vasoconstriction and a subsequent increase in blood pressure. It is part of the renin-angiotensin system, which is a major target for drugs that lower blood pressure. Angiotensin also stimulates the release of aldosterone, another hormone, from the adrenal cortex. Aldosterone promotes sodium retention in the distal nephron, in the kidney, which also drives blood pressure up. (Wikipedia)


Pw000565 View Pathway

Gastric Acid Production

Gastric acid, gastric juice or stomach acid, is a digestive fluid formed in the stomach and is composed of hydrochloric acid (HCl), potassium chloride (KCl), and sodium chloride (NaCl). The acid plays a key role in the digestion of proteins, by activating digestive enzymes and making ingested proteins unravel so that digestive enzymes break down the long chains of amino acids. Gastric acid is produced by cells in the lining of the stomach, which are coupled in feedback systems to increase acid production when needed. Other cells in the stomach produce bicarbonate, a base, to buffer the fluid, ensuring that it does not become too acidic. These cells also produce mucus, which forms a viscous physical barrier to prevent gastric acid from damaging the stomach (Wikipedia).


Pw091899 View Pathway

Hop Pathway in Cardiac Development

Homeodomain transcription factors comprise a large family of DNA binding factors that regulate transcription and development. Many homeodomain genes arranged in genomic clusters determine anterior-posterior patterning, while others determine the fate of cells in specific tissues. The proliferation of cardiac myocytes and their differentiation early in development are both dependent on the coordinate expression and action of serum response factor (SRF), GATA4 and the homeodomain factor Nkx2-5. All three of these factors are expressed in developing cardiomyocytes and induce expression of cardiac genes. Disruption of the Nkx2-5 gene in mice leads to embryonic lethality and defective cardiac development. SRF also plays a duel role in cardiac development, influencing both cardiomyocyte proliferation and differentiation depending on the stage and other signals that are present.In addition, the Hop (Homeodomain Only Protein) gene encodes a factor expressed early in cardiac development that is involved in cardiac differentiation. Hop inactivation in vertebrates leads to severe defects in cardiac development, acting downstream of Nkx2-5. Cardiac cells from mice lacking the Hop gene fail to exit the cell cycle in the normal manner, continuing to proliferate past the normal developmental stage. Many of the genes disregulated in the absence of Hop are involved in the cell cycle and are also targets of SRF. Although Hop is a homeodomain protein, it lacks a DNA-binding domain indicating that it must not regulate gene expression directly. Hop appears to regulate the expression of cardiac genes by binding to SRF and blocking DNA binding of SRF. The sequestration of SRF by Hop blocks the activation of cardiac genes, preventing normal cardiac development. The influence of Hop on the opposing processes of cardiomyocyte differentation and proliferation reflect the interaction of Hop with SRF and the duel role SRF plays. In early cardiac development, Hop opposes differentiation induction by SRF, while at later stages Hop opposes the proliferation induced by SRF.


Pw000147 View Pathway

Kidney Function

Kidneys are regulatory organs involved in removing wastes from the blood, hormone production, nutrient reabsorption, and regulating electrolyte concentrations, acid-base balance, extracellular fluid volume, and blood pressure. The early proximal tubule is where glucose, amino acids, sodium, chlorine, phosphate, bicarbonate, and water are reabsorbed. Only water is reabsorbed in the thin descending loop of Henle, while sodium, chlorine and potassium are reabsorbed in the thick ascending loop of Henle. Sodium and chlorine are also reabsorbed in the early distal convoluted tubule. Finally, sodium and water are reabsorbed in the collecting tubules. Blood pressure is regulated by the hormones angiotensin II and aldosterone, which increases sodium chloride reabsorption. This results in an expansion of the extracellular fluid compartment, thus increasing blood pressure.


Pw000564 View Pathway

Muscle/Heart Contraction

Muscle contractions occur when the myocyte is depolarized enough for an action potential to occur. Depolarization is caused by acetylcholine released from the adjacent motor neuron, which activates nicotinic acetylcholine receptors and opens the sodium/potassium channel. The fast influx of sodium and slow efflux of potassion trigger the action potential. This action potential activates L-type voltage-dependent calcium channels on the membrane and ryanodine receptors on the sarcoplasmic reticulum, both which cause calcium ions to be released into the cytosol. In smooth muscle, ionic calcium induces muscle contraction by binding to and activating myosin light chain kinase, while in striated muscle contraction results from ionic calcium binding to and activating troponin C.


Pw000222 View Pathway

Neuron Function

Neurons are electrically excitable cells that process and transmit information through electrical and chemical signals. A neuron consists of a cell body, branched dendrites to recieve sensory information, and a long singular axon to transmit motor information. Signals travel from the axon of one neuron to the dendrite of another via a synapse. Neurons maintain a voltage gradient across their membrane using metabolically driven ion pumps and ion channels for charge-carrying ions, including sodium (Na+), potassium (K+), chloride (Cl−), and calcium (Ca2+). Stimuli such as pressure, stretch, and chemical transmitters can activate a neuron by causing specific ion-channels to open, changing the membrane potential. If the membrane potential changes by a large enough amount, an electrochemical pulse called an action potential is generated. The action potential travels along the axon and upon reaching the end, causes neurotransmitters such as seratonin, dopamine, or norepinephrine to be released into the synapse. These neurotransmitters diffuse across the synapse and bind to receptors on the target cell, thus propagating the signal.


Pw000619 View Pathway

Pancreas Function

The pancreas is a glandular organ in the digestive system and endocrine system of vertebrates. It is both an endocrine gland producing several important hormones, including insulin, glucagon, somatostatin, and pancreatic polypeptide, and a digestive organ, secreting pancreatic juice containing digestive enzymes that assist the absorption of nutrients and the digestion in the small intestine. These enzymes help to further break down the carbohydrates, proteins, and lipids in the chyme.
Showing 1 - 10 of 7 pathways