Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Small Molecule Pathway Database.

Pathways

Showing 1 - 10 of 6 pathways
SMPDB ID Pathway Chemical Compounds Proteins

SMP00587

Pw000563 View Pathway
physiological

Angiotensin Metabolism

Homo sapiens
Angiotensin is a peptide hormone that causes vasoconstriction and a subsequent increase in blood pressure. It is part of the renin-angiotensin system, which is a major target for drugs that lower blood pressure. Angiotensin also stimulates the release of aldosterone, another hormone, from the adrenal cortex. Aldosterone promotes sodium retention in the distal nephron, in the kidney, which also drives blood pressure up. (Wikipedia)

SMP00586

Pw000562 View Pathway
physiological

Coagulation

Homo sapiens
Blood coagulation can be initiated by either an extrinsic or an intrinsic pathway, resulting in a cascade of serine protease activation that ultimately leads to the formation of thrombin, which converts soluble fibrinogen to an insoluble fibrin clot. The extrinsic, or tissue factor, pathway is initiated upon vascular injury, when the membrane-bound protein tissue factor (TF) comes into contact with factor VII or VIIa in plasma. The TF-VIIa complex is the strongest known activator of the coagulation cascade, and converts factors IX and X to IXa and Xa, respectively. Factors VII, IX, and X are vitamin-K-dependent proteins produced in the liver. In the intrinsic, or contact, pathway, injury exposes collagen to the bloodstream where is binds to factor XII and activates it to XIIa. Factor XIIa converts prekallikrein to kallikrein and factor XI to XIa. Both the extrinsic and intrinsic pathways result in the activation of factor IX to IXa, which forms the 'tenase' complex with factor VIIIa, calcium and phospholipids. This complex converts factor X to Xa and is important in haemostasis. Factor Xa complexes with factor Va (which functions as a non-enzymatic cofactor), calcium and a phospholipid membrane surface to form what is called the prothrombinase complex, which converts prothrombin to thrombin. Thrombin converts soluble fibrinogen to insoluble fibrin polymer, which is stabilized by cross-linking by coagulation factor XIIIa.

SMP00589

Pw000565 View Pathway
physiological

Gastric Acid Production

Homo sapiens
Gastric acid is a digestive fluid, formed in the stomach. Gastric acid is produced by cells lining the stomach, which are coupled to systems to increase acid production when needed.

SMP00483

Pw000147 View Pathway
physiological

Kidney Function

Homo sapiens
Kidneys are regulatory organs involved in removing wastes from the blood, hormone production, nutrient reabsorption, and regulating electrolyte concentrations, acid-base balance, extracellular fluid volume, and blood pressure. The early proximal tubule is where glucose, amino acids, sodium, chlorine, phosphate, bicarbonate, and water are reabsorbed. Only water is reabsorbed in the thin descending loop of Henle, while sodium, chlorine and potassium are reabsorbed in the thick ascending loop of Henle. Sodium and chlorine are also reabsorbed in the early distal convoluted tubule. Finally, sodium and water are reabsorbed in the collecting tubules. Blood pressure is regulated by the hormones angiotensin II and aldosterone, which increases sodium chloride reabsorption. This results in an expansion of the extracellular fluid compartment, thus increasing blood pressure.

SMP00588

Pw000564 View Pathway
physiological

Muscle/Heart Contraction

Homo sapiens
Muscle contractions occur when the myocyte is depolarized enough for an action potential to occur. Depolarization is caused by acetylcholine released from the adjacent motor neuron, which activates nicotinic acetylcholine receptors and opens the sodium/potassium channel. The fast influx of sodium and slow efflux of potassion trigger the action potential. This action potential activates L-type voltage-dependent calcium channels on the membrane and ryanodine receptors on the sarcoplasmic reticulum, both which cause calcium ions to be released into the cytosol. In smooth muscle, ionic calcium induces muscle contraction by binding to and activating myosin light chain kinase, while in striated muscle contraction results from ionic calcium binding to and activating troponin C.

SMP00643

Pw000619 View Pathway
physiological

Pancreas Function

Homo sapiens
The pancreas is a glandular organ in the digestive system and endocrine system of vertebrates. It is both an endocrine gland producing several important hormones, including insulin, glucagon, somatostatin, and pancreatic polypeptide, and a digestive organ, secreting pancreatic juice containing digestive enzymes that assist the absorption of nutrients and the digestion in the small intestine. These enzymes help to further break down the carbohydrates, proteins, and lipids in the chyme.
Showing 1 - 10 of 6 pathways