Loader

Pathways

PathWhiz ID Pathway Meta Data

PW248313

Pw248313 View Pathway
metabolic

2-Heptyl-3-hydroxy-quinolone (PQS) biosynthesis

Pseudomonas aeruginosa
2-Heptyl-3-hydroxy-4-quinolone (PQS) is key to quorum sensing and virulence in bacteria like Pseudomonas aeruginosa PAO1. This biosynthesis begins with the precursor chorismate, which is derived from the shikimate pathway during the biosynthesis of aromatic amino acids e.g., phenylalanine, tyrosine and tryptophan. Chorismate is converted into anthranilate by anthranilate synthase, then into Anthraniloyl-CoA. The subsequent steps involve the action of enzymes 3-oxoacyl-ACP synthase, thioesterase PqsE, and 2-heptyl-4(1H)-quinolone synthase, which facilitate the conversion of Anthraniloyl-CoA to 2-heptyl-4(1H)-quinolone (HHQ), the direct precursor of PQS. Finally, 2-heptyl-3-hydroxy-4(1H)-quinolone synthase hydroxylates HHQ to produce PQS thus linking primary metabolism to secondary metanolism, significant to microbial communication and adaptation.

PW122131

Pw122131 View Pathway
disease

2-Aminoadipic 2-Oxoadipic Aciduria

Rattus norvegicus
2-Aminoadipic 2-oxoadipic aciduria is a disorder of lysine metabolism caused by a defective DHTKD1 gene. DHTKD1 is predicted to code for a component of a supercomplex similar to the 2-oxoglutarate dehydrogenase complex (OGDHc) which catalyzes the conversion of 2-oxoadipate into glutaryl-CoA. This disease is characterized by a large accumulation of 2-oxoadipate and 2-hydroxyadipate in the urine. Symptoms of the disease include mild to severe intellectual disability, developmental delay, ataxia, muscular hypotonia, and epilepsy. However, most cases are asymptomatic.

PW127270

Pw127270 View Pathway
disease

2-Aminoadipic 2-Oxoadipic Aciduria

Homo sapiens
2-Aminoadipic 2-oxoadipic aciduria is a disorder of lysine metabolism caused by a defective DHTKD1 gene. DHTKD1 is predicted to code for a component of a supercomplex similar to the 2-oxoglutarate dehydrogenase complex (OGDHc) which catalyzes the conversion of 2-oxoadipate into glutaryl-CoA. This disease is characterized by a large accumulation of 2-oxoadipate and 2-hydroxyadipate in the urine. Symptoms of the disease include mild to severe intellectual disability, developmental delay, ataxia, muscular hypotonia, and epilepsy. However, most cases are asymptomatic.

PW121907

Pw121907 View Pathway
disease

2-Aminoadipic 2-Oxoadipic Aciduria

Mus musculus
2-Aminoadipic 2-oxoadipic aciduria is a disorder of lysine metabolism caused by a defective DHTKD1 gene. DHTKD1 is predicted to code for a component of a supercomplex similar to the 2-oxoglutarate dehydrogenase complex (OGDHc) which catalyzes the conversion of 2-oxoadipate into glutaryl-CoA. This disease is characterized by a large accumulation of 2-oxoadipate and 2-hydroxyadipate in the urine. Symptoms of the disease include mild to severe intellectual disability, developmental delay, ataxia, muscular hypotonia, and epilepsy. However, most cases are asymptomatic.

PW000696

Pw000696 View Pathway
disease

2-Aminoadipic 2-Oxoadipic Aciduria

Homo sapiens
2-Aminoadipic 2-oxoadipic aciduria is a disorder of lysine metabolism caused by a defective DHTKD1 gene. DHTKD1 is predicted to code for a component of a supercomplex similar to the 2-oxoglutarate dehydrogenase complex (OGDHc) which catalyzes the conversion of 2-oxoadipate into glutaryl-CoA. This disease is characterized by a large accumulation of 2-oxoadipate and 2-hydroxyadipate in the urine. Symptoms of the disease include mild to severe intellectual disability, developmental delay, ataxia, muscular hypotonia, and epilepsy. However, most cases are asymptomatic.

PW122411

Pw122411 View Pathway
metabolic

2-Amino-3-Carboxymuconate Semialdehyde Degradation

Homo sapiens
This pathway is part of a major route of the degradation of L-tryptophan. It begins with 2-amino-3-carboxymuconate-6-semialdehyde which is generated from L-tryptophan degradation. The 2-amino-3-carboxymuconate-6-semialdehyde first is acted upon by a decarboxylase, forming 2-aminomuconic acid semialdehyde, which is then dehydrogenated by 2-aminomuconic semialdehyde dehydrogenase to form 2-aminomuconic acid. An unknown protein forms a 2-aminomuconate deaminase which forms (3E)-2-oxohex-3-enedioate, and a second unknown protein forms a 2-aminomuconate reductase, which forms oxoadipic acid from (3E)-2-oxohex-3-enedioate. Finally, within the mitochondria, oxoadipic acid is dehydrogenated and a coenzyme A is attached by the organelle’s oxoglutarate dehydrogenase complex, forming glutaryl-CoA. Glutaryl-CoA can then be further degraded.

PW124102

Pw124102 View Pathway
signaling

2-AG on CB1

Homo sapiens
2-Arachidoylglycerol acts as a full agonist of both CB1 and CB2 receptors. Here, its numerous effects on CB1 receptors are presented, including a route of its biosynthesis. Within the postsynaptic neuron, PIP2 is hydrolyzed to form a diacylglycerol molecule, which is then further hydrolyzed with the membranous enzyme DAGLa to form 2-AG. The completed 2-AG molecule is then released from the postsynaptic membrane and acts retroactively on CB1 receptors located on the presynaptic membrane. Acting as a G-protein coupled receptor, CB1 directly activates mitogen activated protein kinase (MAPK) and nitric oxide synthase. The activation of MAPK induces its own signalling pathway, which regulates mitosis and the cellular cycle through translation and transcription. Nitric oxide synthase is activated to produce nitric oxide, which has a number of roles in neurons, most notable of which is promoting neuroplasticity through its effect on potassium channels. Nitric oxide also activates soluble guanylyl cyclase, which mediates calcium channels through its production of cGMP. Apart from its activating action, the activated CB1 receptor also inhibits both calcium channels and forskolin activated adenylate cyclase. The inhibition of calcium channels works directly to block the flow of calcium ions into the presynaptic neuron, while the inhibition of adenylate cyclase decreases levels of cAMP within the neuron, leading to activation of potassium channels and focal adhesion kinase (FAK). FAK is involved in intracellular signalling that promotes cell migration and adhesion, while potassium channels work to pump potassium ions out of the presynaptic neuron and into the synaptic cleft.

PW000751

Pw000751 View Pathway
metabolic

2,3-Dihydroxybenzoate Biosynthesis

Escherichia coli
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway. In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.

PW122554

Pw122554 View Pathway
metabolic

2,3-Dihydroxybenzoate Biosynthesis

Pseudomonas aeruginosa
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway. In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.

PW064418

Pw064418 View Pathway
metabolic

2,3-Butanediol (2,3-BDO)

Escherichia coli (strain K12)