Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Propanoate Metabolism
Homo sapiens
Metabolic Pathway
Created: 2013-08-19
Last Updated: 2023-10-25
This pathway depicts the metabolism of propionic acid. Propionic acid in mammals typically arises from the production of the acid by gut or skin microflora. Propionic acid producing bacteria (Propionibacterium sp.) are particularly common in sweat glands of mammals. After entering a cell, the propionic acid (propanoate) then enters the mitochondria where it is converted into propanol adenylate (or propionyl adenylate or propionyl-AMP) via propionyl-CoA synthetase and acetyl-CoA synthetase. The propionyl adenylate then is converted into propionyl coenzyme A (propionyl-CoA) via the same pair of enzymes. Propionyl-CoA is a relatively common compound that can also arise from the metabolic breakdown of fatty acids containing odd numbers of carbon atoms. Propionyl-CoA is also known to arise from the breakdown of some amino acids. Since propanoate has three carbons, propionyl-CoA cannot directly enter the beta-oxidation cycle (which requires two carbons from acetyl-CoA). Therefore, in most vertebrates, propionyl-CoA is carboxylated into D-methylmalonyl-CoA via propionyl-CoA carboxylase. The resulting compound is isomerized into L-methylmalonyl-CoA via methylmalonyl-CoA epimerase. A vitamin B12-dependent enzyme, called methylmalonyl CoA mutase catalyzes the rearrangement of L-methylmalonyl-CoA to succinyl-CoA, which is an intermediate of the citric acid cycle. Also depicted in this pathway is another propionic acid homolog called hydroxypropanoic acid (hydroxypropionate). This compound is also produced by bacteria and imported into cells. Hydroxypropionate can be converted into 3-hydroxypropionyl-CoA. This compound can be either enzymatically converted to acryloyl-CoA and then to propionyl-CoA or it can spontaneously convert to malonyl-CoA. Malonyl-CoA can convert into acetyl-CoA (via acetyl-CoA carboxylase in the cytoplasm or malonyl carboxylase in the mitochondria) whereupon it may enter a variety of pathways. In a rare genetic metabolic disorder called propionic acidemia, propionate acts as a metabolic toxin in liver cells by accumulating in the liver mitochondria as propionyl-CoA and its derivative methylcitrate. Both propionyl-CoA and methylcitrate are known TCA inhibitors. Glial cells are particularly susceptible to propionyl-CoA accumulation. In fact, when propionate is infused into rat brains and take up by the glial cells, it leads to behavioural changes that resemble autism (PMID: 16950524).
References
Propanoate Metabolism References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Bikker H, Bakker HD, Abeling NG, Poll-The BT, Kleijer WJ, Rosenblatt DS, Waterham HR, Wanders RJ, Duran M: A homozygous nonsense mutation in the methylmalonyl-CoA epimerase gene (MCEE) results in mild methylmalonic aciduria. Hum Mutat. 2006 Jul;27(7):640-3. doi: 10.1002/humu.20373.
Pubmed: 16752391
Bobik TA, Rasche ME: Identification of the human methylmalonyl-CoA racemase gene based on the analysis of prokaryotic gene arrangements. Implications for decoding the human genome. J Biol Chem. 2001 Oct 5;276(40):37194-8. doi: 10.1074/jbc.M107232200. Epub 2001 Jul 31.
Pubmed: 11481338
Hillier LW, Graves TA, Fulton RS, Fulton LA, Pepin KH, Minx P, Wagner-McPherson C, Layman D, Wylie K, Sekhon M, Becker MC, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Kremitzki C, Oddy L, Du H, Sun H, Bradshaw-Cordum H, Ali J, Carter J, Cordes M, Harris A, Isak A, van Brunt A, Nguyen C, Du F, Courtney L, Kalicki J, Ozersky P, Abbott S, Armstrong J, Belter EA, Caruso L, Cedroni M, Cotton M, Davidson T, Desai A, Elliott G, Erb T, Fronick C, Gaige T, Haakenson W, Haglund K, Holmes A, Harkins R, Kim K, Kruchowski SS, Strong CM, Grewal N, Goyea E, Hou S, Levy A, Martinka S, Mead K, McLellan MD, Meyer R, Randall-Maher J, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Shah N, Swearengen-Shahid S, Snider J, Strong JT, Thompson J, Yoakum M, Leonard S, Pearman C, Trani L, Radionenko M, Waligorski JE, Wang C, Rock SM, Tin-Wollam AM, Maupin R, Latreille P, Wendl MC, Yang SP, Pohl C, Wallis JW, Spieth J, Bieri TA, Berkowicz N, Nelson JO, Osborne J, Ding L, Meyer R, Sabo A, Shotland Y, Sinha P, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Jones TA, She X, Ciccarelli FD, Izaurralde E, Taylor J, Schmutz J, Myers RM, Cox DR, Huang X, McPherson JD, Mardis ER, Clifton SW, Warren WC, Chinwalla AT, Eddy SR, Marra MA, Ovcharenko I, Furey TS, Miller W, Eichler EE, Bork P, Suyama M, Torrents D, Waterston RH, Wilson RK: Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature. 2005 Apr 7;434(7034):724-31. doi: 10.1038/nature03466.
Pubmed: 15815621
Nham SU, Wilkemeyer MF, Ledley FD: Structure of the human methylmalonyl-CoA mutase (MUT) locus. Genomics. 1990 Dec;8(4):710-6.
Pubmed: 1980486
Raff ML, Crane AM, Jansen R, Ledley FD, Rosenblatt DS: Genetic characterization of a MUT locus mutation discriminating heterogeneity in mut0 and mut- methylmalonic aciduria by interallelic complementation. J Clin Invest. 1991 Jan;87(1):203-7. doi: 10.1172/JCI114972.
Pubmed: 1670635
Jansen R, Kalousek F, Fenton WA, Rosenberg LE, Ledley FD: Cloning of full-length methylmalonyl-CoA mutase from a cDNA library using the polymerase chain reaction. Genomics. 1989 Feb;4(2):198-205.
Pubmed: 2567699
FitzPatrick DR, Hill A, Tolmie JL, Thorburn DR, Christodoulou J: The molecular basis of malonyl-CoA decarboxylase deficiency. Am J Hum Genet. 1999 Aug;65(2):318-26. doi: 10.1086/302492.
Pubmed: 10417274
Sacksteder KA, Morrell JC, Wanders RJ, Matalon R, Gould SJ: MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA decarboxylase and is mutated in malonyl-CoA decarboxylase deficiency. J Biol Chem. 1999 Aug 27;274(35):24461-8. doi: 10.1074/jbc.274.35.24461.
Pubmed: 10455107
Gao J, Waber L, Bennett MJ, Gibson KM, Cohen JC: Cloning and mutational analysis of human malonyl-coenzyme A decarboxylase. J Lipid Res. 1999 Jan;40(1):178-82.
Pubmed: 9869665
Abu-Elheiga L, Jayakumar A, Baldini A, Chirala SS, Wakil SJ: Human acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two isoforms. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4011-5. doi: 10.1073/pnas.92.9.4011.
Pubmed: 7732023
Mao J, Chirala SS, Wakil SJ: Human acetyl-CoA carboxylase 1 gene: presence of three promoters and heterogeneity at the 5'-untranslated mRNA region. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7515-20. doi: 10.1073/pnas.1332670100. Epub 2003 Jun 16.
Pubmed: 12810950
Sinilnikova OM, Ginolhac SM, Magnard C, Leone M, Anczukow O, Hughes D, Moreau K, Thompson D, Coutanson C, Hall J, Romestaing P, Gerard JP, Bonadona V, Lasset C, Goldgar DE, Joulin V, Venezia ND, Lenoir GM: Acetyl-CoA carboxylase alpha gene and breast cancer susceptibility. Carcinogenesis. 2004 Dec;25(12):2417-24. doi: 10.1093/carcin/bgh273. Epub 2004 Aug 27.
Pubmed: 15333468
Fukao T, Yamaguchi S, Kano M, Orii T, Fujiki Y, Osumi T, Hashimoto T: Molecular cloning and sequence of the complementary DNA encoding human mitochondrial acetoacetyl-coenzyme A thiolase and study of the variant enzymes in cultured fibroblasts from patients with 3-ketothiolase deficiency. J Clin Invest. 1990 Dec;86(6):2086-92. doi: 10.1172/JCI114946.
Pubmed: 1979337
Kano M, Fukao T, Yamaguchi S, Orii T, Osumi T, Hashimoto T: Structure and expression of the human mitochondrial acetoacetyl-CoA thiolase-encoding gene. Gene. 1991 Dec 30;109(2):285-90. doi: 10.1016/0378-1119(91)90623-j.
Pubmed: 1684944
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Chambliss KL, Gray RG, Rylance G, Pollitt RJ, Gibson KM: Molecular characterization of methylmalonate semialdehyde dehydrogenase deficiency. J Inherit Metab Dis. 2000 Jul;23(5):497-504.
Pubmed: 10947204
Heilig R, Eckenberg R, Petit JL, Fonknechten N, Da Silva C, Cattolico L, Levy M, Barbe V, de Berardinis V, Ureta-Vidal A, Pelletier E, Vico V, Anthouard V, Rowen L, Madan A, Qin S, Sun H, Du H, Pepin K, Artiguenave F, Robert C, Cruaud C, Bruls T, Jaillon O, Friedlander L, Samson G, Brottier P, Cure S, Segurens B, Aniere F, Samain S, Crespeau H, Abbasi N, Aiach N, Boscus D, Dickhoff R, Dors M, Dubois I, Friedman C, Gouyvenoux M, James R, Madan A, Mairey-Estrada B, Mangenot S, Martins N, Menard M, Oztas S, Ratcliffe A, Shaffer T, Trask B, Vacherie B, Bellemere C, Belser C, Besnard-Gonnet M, Bartol-Mavel D, Boutard M, Briez-Silla S, Combette S, Dufosse-Laurent V, Ferron C, Lechaplais C, Louesse C, Muselet D, Magdelenat G, Pateau E, Petit E, Sirvain-Trukniewicz P, Trybou A, Vega-Czarny N, Bataille E, Bluet E, Bordelais I, Dubois M, Dumont C, Guerin T, Haffray S, Hammadi R, Muanga J, Pellouin V, Robert D, Wunderle E, Gauguet G, Roy A, Sainte-Marthe L, Verdier J, Verdier-Discala C, Hillier L, Fulton L, McPherson J, Matsuda F, Wilson R, Scarpelli C, Gyapay G, Wincker P, Saurin W, Quetier F, Waterston R, Hood L, Weissenbach J: The DNA sequence and analysis of human chromosome 14. Nature. 2003 Feb 6;421(6923):601-7. doi: 10.1038/nature01348. Epub 2003 Jan 1.
Pubmed: 12508121
Osei YD, Churchich JE: Screening and sequence determination of a cDNA encoding the human brain 4-aminobutyrate aminotransferase. Gene. 1995 Apr 3;155(2):185-7. doi: 10.1016/0378-1119(94)00858-p.
Pubmed: 7721088
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Janssen U, Davis EM, Le Beau MM, Stoffel W: Human mitochondrial enoyl-CoA hydratase gene (ECHS1): structural organization and assignment to chromosome 10q26.2-q26.3. Genomics. 1997 Mar 15;40(3):470-5. doi: 10.1006/geno.1996.4597.
Pubmed: 9073515
Peters H, Buck N, Wanders R, Ruiter J, Waterham H, Koster J, Yaplito-Lee J, Ferdinandusse S, Pitt J: ECHS1 mutations in Leigh disease: a new inborn error of metabolism affecting valine metabolism. Brain. 2014 Nov;137(Pt 11):2903-8. doi: 10.1093/brain/awu216. Epub 2014 Aug 14.
Pubmed: 25125611
Haack TB, Jackson CB, Murayama K, Kremer LS, Schaller A, Kotzaeridou U, de Vries MC, Schottmann G, Santra S, Buchner B, Wieland T, Graf E, Freisinger P, Eggimann S, Ohtake A, Okazaki Y, Kohda M, Kishita Y, Tokuzawa Y, Sauer S, Memari Y, Kolb-Kokocinski A, Durbin R, Hasselmann O, Cremer K, Albrecht B, Wieczorek D, Engels H, Hahn D, Zink AM, Alston CL, Taylor RW, Rodenburg RJ, Trollmann R, Sperl W, Strom TM, Hoffmann GF, Mayr JA, Meitinger T, Bolognini R, Schuelke M, Nuoffer JM, Kolker S, Prokisch H, Klopstock T: Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement. Ann Clin Transl Neurol. 2015 May;2(5):492-509. doi: 10.1002/acn3.189. Epub 2015 Mar 13.
Pubmed: 26000322
Hawes JW, Jaskiewicz J, Shimomura Y, Huang B, Bunting J, Harper ET, Harris RA: Primary structure and tissue-specific expression of human beta-hydroxyisobutyryl-coenzyme A hydrolase. J Biol Chem. 1996 Oct 18;271(42):26430-4. doi: 10.1074/jbc.271.42.26430.
Pubmed: 8824301
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings