Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Quinapril Metabolism Pathway
Homo sapiens
Drug Metabolism Pathway
Created: 2013-09-11
Last Updated: 2019-08-29
Quinapril (trade name: Accupril) belongs to the class of drugs known as angiotensin-converting enzyme (ACE) inhibitors and is used primarily to lower high blood pressure (hypertension). This drug can also be used in the treatment of congestive heart failure and type II diabetes. Quinapril is a prodrug which, following oral administration, undergoes biotransformation in vivo into its active form quinaprilat via cleavage of its ester group by the liver. Angiotensin-converting enzyme (ACE) is a component of the body's renin–angiotensin–aldosterone system (RAAS) and cleaves inactive angiotensin I into the active vasoconstrictor angiotensin II. ACE (or kininase II) also degrades the potent vasodilator bradykinin. Consequently, ACE inhibitors decrease angiotensin II concentrations and increase bradykinin concentrations resulting in blood vessel dilation and thereby lowering blood pressure.
References
Quinapril Pathway References
Accupril. (2009). e-CPS (online version of Compendium of Pharmaceuticals and Specialties). Retrieved August 22, 2009.
Bader, M. Renin-angiotensin-aldosterone system. In S. Offermanns, & W. Rosenthal (Eds.). Encyclopedic reference of molecular pharmacology (2004) p.810-814. Berlin, Germany: Springer.
Peters, J. ACE inhibitors. In S. Offermanns, & W. Rosenthal (Eds.). Encyclopedic reference of molecular pharmacology (2004) p. 2-5. Berlin, Germany: Springer.
Stanfield, C.L., & Germann, W.J. Principles of human physiology (3rd ed.) (2008). San Francisco, CA: Pearson Education, Inc.;
Frishman WH: The safety and efficacy of quinapril in the treatment of mild to moderate essential hypertension. Clin Cardiol. 1990 Jun;13(6 Suppl 7):VII19-25.
Pubmed: 2189617
Ehlers MR, Riordan JF: Angiotensin-converting enzyme: zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. Biochemistry. 1991 Jul 23;30(29):7118-26. doi: 10.1021/bi00243a012.
Pubmed: 1649623
Woodman ZL, Oppong SY, Cook S, Hooper NM, Schwager SL, Brandt WF, Ehlers MR, Sturrock ED: Shedding of somatic angiotensin-converting enzyme (ACE) is inefficient compared with testis ACE despite cleavage at identical stalk sites. Biochem J. 2000 May 1;347 Pt 3:711-8.
Pubmed: 10769174
Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S: A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000 Sep 1;87(5):E1-9. doi: 10.1161/01.res.87.5.e1.
Pubmed: 10969042
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings