Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Retinol Metabolism
Homo sapiens
Metabolic Pathway
Created: 2013-08-19
Last Updated: 2023-10-25
Retinol is part of the vitamin A family, and is known as vitamin A1, and in a dietary context it is a type of preformed vitamin A. As with other preformed vitamin A's, it can be obtained from animal sources, with the highest concentrations coming from animal liver, with other sources being fish and dairy products. Other forms of vitamin A include retinal, its aldehyde form, retinoic acid, its acid form, and reinyl ester, its ester form. Additionally, herbivores and omnivores can obtain provitamin A from things such as alpha-, beta- and gamma-carotene, which can be converted to retinol as needed by the body.
Retinol can be used in the body to form retinyl ester via diacylglycerol O-acyltransferase 1 and acyl-CoA wax akcohol acyltransferase 1 which both use acetyl-CoA as a reactant and produce CoA in addition to the retinyl ester. IT can also be produced by lecithin retinol acyltransferase, which uses a phosphatidylcholine molecule, and produces glycerophosphocholine. All of these reactions take place in the endoplasmic reticulum. Retinyl ester can also be converted back to retinol by patatin-like phospholipase domain-containing protein 4 as the enzyme in a reaction that also converts a diacylglycerol to a triacylglycerol. Alternately, retinyl ester can interact with retinoid isomerohydrolase to form 11-cis-retinol.
11-cis-retinol can be converted to retinyl palmitate by either diacylglycerol O-acyltransferase 1 or acyl-CoA wax alcohol acyltransferase 1 in the endoplasmic reticulum, which both add the acetyl group onto 11-cis-retinol, forming CoA as a side product. Alternatively, retinyl palmitate can be formed by lecithin retinol acyltransferase, which takes a molecule of phosphatidylcholine, and produces glycerophosphocholine in addition to the retinyl palmitate.
Rhodopsin, a photosensitive protein found in the retina, can be converted to bathorhodopsin, which has previously been known as prelumirhodopsin. This conversion is caused by the absorption of light into the retinal portion of the protein complex, which then isomerizes, forcing the protein to change shape to accomodate this. Bathorhodopsin almost immediately converts to lumirhodopsin, which then converts to metarhodopsin, and at this point, the retinal is in its all-trans configuration. All-trans retinal can also be formed from 11-cis-retinaldehyde, also known as 11-cis-retinal, via dehydrogenase/reductase SDR family member 4 or retinol dehydrogenase 12 in the cell, as well as retinol dehydrogenases 8 and 16, short-chain dehydrogenase/reductase 3 or dehydrogenase/reductase SRD family member 9 in the endoplasmic reticulum. Two molecules of retinal can also be formed from beta-carotene, after its interaction with betabeta-carotene 15,15'-monooxygenase, or from retinol via retinol dehydrogenase 11 in the endoplasmic reticulum. Additionally, 11-cis-retinaldehyde can reversibly form all-trans retinal via interaction with alcohol dehydrogenase 1A. 11-cis-retinaldehyde is also in the conformation found in rhodopsin, and can be used to create more rhodopsin complexes. 11-cis-retinaldehyde can also be converted to 11-cis-retinol by retinol dehydrogenase in the endoplasmic reticulum.
Retinol can also isomerize and form 9-cis-retinol, which can then be reversibly oxidized to form 9-cis-retinal by interacting with either retinol dehydrogenase 11 or dehydrogenase/reductase SDR family member 4. 9-cis-retinal can then be further oxidized to 9-cis-retinoic acid by retinal dehydrogenase 1 or 2. 9-cis-retinoic acid can also be formed from the isomerization of all-trans retinoic acid, which in turn is formed by the oxidation of retinol by either of retinal dehydrogenase 1 or 2.
All-trans retinoic acid can also be glucuronidated to form retinoyl b-glucuronide, in a reaction catalyzed by a multiprotein chaperone complex including UDP-glucuronosyltransferase 1-1 in the endoplasmic reticulum.
Finally, in the endoplasmic reticulum, all-trans-retinoic acid can undergo epoxidation to form all-trans-5,6-epoxyretinoic acid by interaction with a complex of cytochrome P450 proteins, or hydroxylated to either 4-hydroxyretinoic acid or all-trans-18-hydroxyretinoic acid by cytochrome P450 26A1. In one last reqction, 4-hydroxyretinoic acid can be oxidized once again by cytochrome P450 26A1 to form 4-oxo-retinoic acid.
References
Retinol Metabolism References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Astrom A, Tavakkol A, Pettersson U, Cromie M, Elder JT, Voorhees JJ: Molecular cloning of two human cellular retinoic acid-binding proteins (CRABP). Retinoic acid-induced expression of CRABP-II but not CRABP-I in adult human skin in vivo and in skin fibroblasts in vitro. J Biol Chem. 1991 Sep 15;266(26):17662-6.
Pubmed: 1654334
Roberts AB, Nichols MD, Newton DL, Sporn MB: In vitro metabolism of retinoic acid in hamster intestine and liver. J Biol Chem. 1979 Jul 25;254(14):6296-302.
Pubmed: 447713
Gutierrez-Mazariegos J, Schubert M, Laudet V: Evolution of retinoic acid receptors and retinoic acid signaling. Subcell Biochem. 2014;70:55-73. doi: 10.1007/978-94-017-9050-5_4.
Pubmed: 24962881
O'Connell MJ, Chua R, Hoyos B, Buck J, Chen Y, Derguini F, Hammerling U: Retro-retinoids in regulated cell growth and death. J Exp Med. 1996 Aug 1;184(2):549-55. doi: 10.1084/jem.184.2.549.
Pubmed: 8760808
Blaner WS, Li Y, Brun PJ, Yuen JJ, Lee SA, Clugston RD: Vitamin A Absorption, Storage and Mobilization. Subcell Biochem. 2016;81:95-125. doi: 10.1007/978-94-024-0945-1_4.
Pubmed: 27830502
Blomhoff R, Green MH, Green JB, Berg T, Norum KR: Vitamin A metabolism: new perspectives on absorption, transport, and storage. Physiol Rev. 1991 Oct;71(4):951-90. doi: 10.1152/physrev.1991.71.4.951.
Pubmed: 1924551
Belyaeva OV, Wu L, Shmarakov I, Nelson PS, Kedishvili NY: Retinol dehydrogenase 11 is essential for the maintenance of retinol homeostasis in liver and testis in mice. J Biol Chem. 2018 May 4;293(18):6996-7007. doi: 10.1074/jbc.RA117.001646. Epub 2018 Mar 22.
Pubmed: 29567832
Zhang M, Hu P, Napoli JL: Elements in the N-terminal signaling sequence that determine cytosolic topology of short-chain dehydrogenases/reductases. Studies with retinol dehydrogenase type 1 and cis-retinol/androgen dehydrogenase type 1. J Biol Chem. 2004 Dec 3;279(49):51482-9. doi: 10.1074/jbc.M409051200. Epub 2004 Sep 7.
Pubmed: 15355969
von Bahr-Lindstrom H, Hoog JO, Heden LO, Kaiser R, Fleetwood L, Larsson K, Lake M, Holmquist B, Holmgren A, Hempel J, et al.: cDNA and protein structure for the alpha subunit of human liver alcohol dehydrogenase. Biochemistry. 1986 May 6;25(9):2465-70. doi: 10.1021/bi00357a026.
Pubmed: 3013304
Ikuta T, Szeto S, Yoshida A: Three human alcohol dehydrogenase subunits: cDNA structure and molecular and evolutionary divergence. Proc Natl Acad Sci U S A. 1986 Feb;83(3):634-8. doi: 10.1073/pnas.83.3.634.
Pubmed: 2935875
Matsuo Y, Yokoyama S: Molecular structure of the human alcohol dehydrogenase 1 gene. FEBS Lett. 1989 Jan 16;243(1):57-60. doi: 10.1016/0014-5793(89)81217-7.
Pubmed: 2920825
Marchette LD, Thompson DA, Kravtsova M, Ngansop TN, Mandal MN, Kasus-Jacobi A: Retinol dehydrogenase 12 detoxifies 4-hydroxynonenal in photoreceptor cells. Free Radic Biol Med. 2010 Jan 1;48(1):16-25. doi: 10.1016/j.freeradbiomed.2009.08.005. Epub 2009 Aug 14.
Pubmed: 19686838
Perrault I, Hanein S, Gerber S, Barbet F, Ducroq D, Dollfus H, Hamel C, Dufier JL, Munnich A, Kaplan J, Rozet JM: Retinal dehydrogenase 12 (RDH12) mutations in leber congenital amaurosis. Am J Hum Genet. 2004 Oct;75(4):639-46. doi: 10.1086/424889. Epub 2004 Aug 20.
Pubmed: 15322982
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Su Z, Li R, Song X, Liu G, Li Y, Chang X, Li C, Huang D: Identification of a novel isoform of DHRS4 protein with a nuclear localization signal. Gene. 2012 Feb 25;494(2):161-7. doi: 10.1016/j.gene.2011.12.033. Epub 2011 Dec 28.
Pubmed: 22227495
Fransen M, Van Veldhoven PP, Subramani S: Identification of peroxisomal proteins by using M13 phage protein VI phage display: molecular evidence that mammalian peroxisomes contain a 2,4-dienoyl-CoA reductase. Biochem J. 1999 Jun 1;340 ( Pt 2):561-8.
Pubmed: 10333503
Du J, Huang DY, Liu GF, Wang GL, Xu XL, Wang B, Zhu L: CDNA cloning of a short isoform of human liver NADP (H) -dependent retinol dehydrogenase/reductase and analysis of its characteristics. Yi Chuan Xue Bao. 2004 Jul;31(7):661-7.
Pubmed: 15473316
Gough WH, VanOoteghem S, Sint T, Kedishvili NY: cDNA cloning and characterization of a new human microsomal NAD+-dependent dehydrogenase that oxidizes all-trans-retinol and 3alpha-hydroxysteroids. J Biol Chem. 1998 Jul 31;273(31):19778-85. doi: 10.1074/jbc.273.31.19778.
Pubmed: 9677409
Jurukovski V, Markova NG, Karaman-Jurukovska N, Randolph RK, Su J, Napoli JL, Simon M: Cloning and characterization of retinol dehydrogenase transcripts expressed in human epidermal keratinocytes. Mol Genet Metab. 1999 May;67(1):62-73. doi: 10.1006/mgme.1999.2840.
Pubmed: 10329026
Cain JM, Zaino R, Shearer D, Bennett RA, Olt G, Weisz J: Expression of a retinol dehydrogenase (hRoDH-4), a member of the retinol/steroid dehydrogenase family implicated in retinoic acid biosynthesis, in normal and neoplastic endometria. Am J Obstet Gynecol. 2002 Apr;186(4):675-83. doi: 10.1067/mob.2002.122127.
Pubmed: 11967490
Rattner A, Smallwood PM, Nathans J: Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J Biol Chem. 2000 Apr 14;275(15):11034-43. doi: 10.1074/jbc.275.15.11034.
Pubmed: 10753906
Haeseleer F, Huang J, Lebioda L, Saari JC, Palczewski K: Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal. J Biol Chem. 1998 Aug 21;273(34):21790-9. doi: 10.1074/jbc.273.34.21790.
Pubmed: 9705317
Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C, Currell B, Deuel B, Dowd P, Eaton D, Foster J, Grimaldi C, Gu Q, Hass PE, Heldens S, Huang A, Kim HS, Klimowski L, Jin Y, Johnson S, Lee J, Lewis L, Liao D, Mark M, Robbie E, Sanchez C, Schoenfeld J, Seshagiri S, Simmons L, Singh J, Smith V, Stinson J, Vagts A, Vandlen R, Watanabe C, Wieand D, Woods K, Xie MH, Yansura D, Yi S, Yu G, Yuan J, Zhang M, Zhang Z, Goddard A, Wood WI, Godowski P, Gray A: The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res. 2003 Oct;13(10):2265-70. doi: 10.1101/gr.1293003. Epub 2003 Sep 15.
Pubmed: 12975309
Chetyrkin SV, Belyaeva OV, Gough WH, Kedishvili NY: Characterization of a novel type of human microsomal 3alpha -hydroxysteroid dehydrogenase: unique tissue distribution and catalytic properties. J Biol Chem. 2001 Jun 22;276(25):22278-86. doi: 10.1074/jbc.M102076200. Epub 2001 Apr 9.
Pubmed: 11294878
Soref CM, Di YP, Hayden L, Zhao YH, Satre MA, Wu R: Characterization of a novel airway epithelial cell-specific short chain alcohol dehydrogenase/reductase gene whose expression is up-regulated by retinoids and is involved in the metabolism of retinol. J Biol Chem. 2001 Jun 29;276(26):24194-202. doi: 10.1074/jbc.M100332200. Epub 2001 Apr 13.
Pubmed: 11304534
Markova NG, Pinkas-Sarafova A, Karaman-Jurukovska N, Jurukovski V, Simon M: Expression pattern and biochemical characteristics of a major epidermal retinol dehydrogenase. Mol Genet Metab. 2003 Feb;78(2):119-35.
Pubmed: 12618084
Xie YA, Lee W, Cai C, Gambin T, Noupuu K, Sujirakul T, Ayuso C, Jhangiani S, Muzny D, Boerwinkle E, Gibbs R, Greenstein VC, Lupski JR, Tsang SH, Allikmets R: New syndrome with retinitis pigmentosa is caused by nonsense mutations in retinol dehydrogenase RDH11. Hum Mol Genet. 2014 Nov 1;23(21):5774-80. doi: 10.1093/hmg/ddu291. Epub 2014 Jun 10.
Pubmed: 24916380
Lin B, White JT, Ferguson C, Wang S, Vessella R, Bumgarner R, True LD, Hood L, Nelson PS: Prostate short-chain dehydrogenase reductase 1 (PSDR1): a new member of the short-chain steroid dehydrogenase/reductase family highly expressed in normal and neoplastic prostate epithelium. Cancer Res. 2001 Feb 15;61(4):1611-8.
Pubmed: 11245473
Lai CH, Chou CY, Ch'ang LY, Liu CS, Lin W: Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000 May;10(5):703-13. doi: 10.1101/gr.10.5.703.
Pubmed: 10810093
Senechal A, Humbert G, Surget MO, Bazalgette C, Bazalgette C, Arnaud B, Arndt C, Laurent E, Brabet P, Hamel CP: Screening genes of the retinoid metabolism: novel LRAT mutation in leber congenital amaurosis. Am J Ophthalmol. 2006 Oct;142(4):702-4. doi: 10.1016/j.ajo.2006.04.057.
Pubmed: 17011878
Ruiz A, Winston A, Lim YH, Gilbert BA, Rando RR, Bok D: Molecular and biochemical characterization of lecithin retinol acyltransferase. J Biol Chem. 1999 Feb 5;274(6):3834-41. doi: 10.1074/jbc.274.6.3834.
Pubmed: 9920938
Zolfaghari R, Ross AC: Cloning, gene organization and identification of an alternative splicing process in lecithin:retinol acyltransferase cDNA from human liver. Gene. 2004 Oct 27;341:181-8. doi: 10.1016/j.gene.2004.06.043.
Pubmed: 15474300
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings