Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Globoid Cell Leukodystrophy
Homo sapiens
Disease Pathway
Created: 2013-08-19
Last Updated: 2022-11-22
Globoid Cell Leukodistrophy (GLD), also called Krabbe disease and galactosylceramide lipidosis, is an extremely rare inherited inborn error of metabolism (IEM). It is a degenerative disorder that affects the nervous system. It has an estimated prevalence of 1/100,000 in the Northern European population and a worldwide incidence of 1/100,000-1/250,000 live births. GLD is an autosomal recessive disorder that is caused by a deficiency of an enzyme called galactosylceramidase. Galactosylceramidase is a lysosomal protein that hydrolyzes the galactose ester bonds of ceramides and ceramide derivatives including galactocerebroside, galactosylsphingosine (psychosine), lactosylceramide, and monogalactosyldiglyceride. More specifically, galactosylceramidase is an enzyme that is involved in the catabolism (via the removal of galactose) of galactosylceramide, a major lipid in myelin, kidney, and epithelial cells of the small intestine and colon. Defects in galactosylceramidase lead to the accumulation of cytotoxic psychosine, which ultimately leads to apoptosis of oligodendrocytes and demyelination. As a result, this enzyme deficiency impairs the growth and maintenance of myelin, the protective sheath around nerve cell axons that ensures that electrical impulses are rapidly transmitted. GLD is part of a group of disorders known as leukodystrophies, which result from the loss of myelin (demyelination). GLD is also characterized by the abnormal presence of globoid cells, which are globe-shaped cells that often have multiple nuclei. There are three different phenotypes for GLD: infantile, juvenile, and late-onset. Neurodegeneration and early death (at age 2-3) occur in most infantile cases. In juvenile patients, the disease is often fatal 2-7 years after the symptoms begin. Adult-onset patients can survive many years after symptoms first manifest. The symptoms of infantile GLD usually begin during the first year of life. Typically, the initial signs and symptoms include feeding difficulties, episodes of fever without any sign of infection, irritability, stiff posture, muscle weakness, and slowed mental and physical development. Muscles continue to weaken as the disease progresses which decreases the infant's ability to move, chew, swallow, and breathe. It is also common for affected infants to experience vision loss and seizures. Treatment is limited to hematopoietic stem cell transplantation in pre-symptomatic infantile patients and mildly affected late-onset patients. Stem cell transplants have been shown to slow the progression of the disease.
References
Globoid Cell Leukodystrophy References
[Uniprot: P54803](http://www.uniprot.org/uniprot/P54803)
[OMIM: Entry 245200](http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=245200)
Arroyo HA, Grippo J, Taratuto A, Duffau J, Chamoles N: Krabbe disease in monozygotic triplets. Dev Med Child Neurol. 1991 Dec;33(12):1101-3.
Pubmed: 1778346
De Gasperi R, Gama Sosa MA, Sartorato EL, Battistini S, MacFarlane H, Gusella JF, Krivit W, Kolodny EH: Molecular heterogeneity of late-onset forms of globoid-cell leukodystrophy. Am J Hum Genet. 1996 Dec;59(6):1233-42.
Pubmed: 8940268
Duchen LW, Eicher EM, Jacobs JM, Scaravilli F, Teixeira F: Hereditary leucodystrophy in the mouse: the new mutant twitcher. Brain. 1980 Sep;103(3):695-710.
Pubmed: 7417782
Furuya H, Kukita Y, Nagano S, Sakai Y, Yamashita Y, Fukuyama H, Inatomi Y, Saito Y, Koike R, Tsuji S, Fukumaki Y, Hayashi K, Kobayashi T: Adult onset globoid cell leukodystrophy (Krabbe disease): analysis of galactosylceramidase cDNA from four Japanese patients. Hum Genet. 1997 Sep;100(3-4):450-6.
Pubmed: 9272171
Husain AM, Altuwaijri M, Aldosari M: Krabbe disease: neurophysiologic studies and MRI correlations. Neurology. 2004 Aug 24;63(4):617-20.
Pubmed: 15326231
Kolodny EH, Raghavan S, Krivit W: Late-onset Krabbe disease (globoid cell leukodystrophy): clinical and biochemical features of 15 cases. Dev Neurosci. 1991;13(4-5):232-9. doi: 10.1159/000112166.
Pubmed: 1817026
Xu C, Sakai N, Taniike M, Inui K, Ozono K: Six novel mutations detected in the GALC gene in 17 Japanese patients with Krabbe disease, and new genotype-phenotype correlation. J Hum Genet. 2006;51(6):548-54. doi: 10.1007/s10038-006-0396-3. Epub 2006 Apr 11.
Pubmed: 16607461
Wenger DA, Rafi MA, Luzi P: Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum Mutat. 1997;10(4):268-79. doi: 10.1002/(SICI)1098-1004(1997)10:4<268::AID-HUMU2>3.0.CO;2-D.
Pubmed: 9338580
Li Y, Sands MS: Experimental therapies in the murine model of globoid cell leukodystrophy. Pediatr Neurol. 2014 Nov;51(5):600-6. doi: 10.1016/j.pediatrneurol.2014.08.003. Epub 2014 Aug 8.
Pubmed: 25240259
Sphingolipid Metabolism References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Vance, D.E., and Vance, J.E. Biochemistry of lipids, lipoproteins, and membranes (4th ed.) (2002) Amsterdam; Boston: Elsevier.
Rotthier A, Auer-Grumbach M, Janssens K, Baets J, Penno A, Almeida-Souza L, Van Hoof K, Jacobs A, De Vriendt E, Schlotter-Weigel B, Loscher W, Vondracek P, Seeman P, De Jonghe P, Van Dijck P, Jordanova A, Hornemann T, Timmerman V: Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am J Hum Genet. 2010 Oct 8;87(4):513-22. doi: 10.1016/j.ajhg.2010.09.010.
Pubmed: 20920666
Weiss B, Stoffel W: Human and murine serine-palmitoyl-CoA transferase--cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur J Biochem. 1997 Oct 1;249(1):239-47. doi: 10.1111/j.1432-1033.1997.00239.x.
Pubmed: 9363775
Nagase T, Ishikawa K, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O: Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res. 1998 Feb 28;5(1):31-9. doi: 10.1093/dnares/5.1.31.
Pubmed: 9628581
Dawkins JL, Hulme DJ, Brahmbhatt SB, Auer-Grumbach M, Nicholson GA: Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat Genet. 2001 Mar;27(3):309-12. doi: 10.1038/85879.
Pubmed: 11242114
Taouji S, Higa A, Delom F, Palcy S, Mahon FX, Pasquet JM, Bosse R, Segui B, Chevet E: Phosphorylation of serine palmitoyltransferase long chain-1 (SPTLC1) on tyrosine 164 inhibits its activity and promotes cell survival. J Biol Chem. 2013 Jun 14;288(24):17190-201. doi: 10.1074/jbc.M112.409185. Epub 2013 Apr 29.
Pubmed: 23629659
Verhoeven K, Coen K, De Vriendt E, Jacobs A, Van Gerwen V, Smouts I, Pou-Serradell A, Martin JJ, Timmerman V, De Jonghe P: SPTLC1 mutation in twin sisters with hereditary sensory neuropathy type I. Neurology. 2004 Mar 23;62(6):1001-2. doi: 10.1212/01.wnl.0000115388.10828.5c.
Pubmed: 15037712
Rimokh R, Gadoux M, Bertheas MF, Berger F, Garoscio M, Deleage G, Germain D, Magaud JP: FVT-1, a novel human transcription unit affected by variant translocation t(2;18)(p11;q21) of follicular lymphoma. Blood. 1993 Jan 1;81(1):136-42.
Pubmed: 8417785
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Nusbaum C, Zody MC, Borowsky ML, Kamal M, Kodira CD, Taylor TD, Whittaker CA, Chang JL, Cuomo CA, Dewar K, FitzGerald MG, Yang X, Abouelleil A, Allen NR, Anderson S, Bloom T, Bugalter B, Butler J, Cook A, DeCaprio D, Engels R, Garber M, Gnirke A, Hafez N, Hall JL, Norman CH, Itoh T, Jaffe DB, Kuroki Y, Lehoczky J, Lui A, Macdonald P, Mauceli E, Mikkelsen TS, Naylor JW, Nicol R, Nguyen C, Noguchi H, O'Leary SB, O'Neill K, Piqani B, Smith CL, Talamas JA, Topham K, Totoki Y, Toyoda A, Wain HM, Young SK, Zeng Q, Zimmer AR, Fujiyama A, Hattori M, Birren BW, Sakaki Y, Lander ES: DNA sequence and analysis of human chromosome 18. Nature. 2005 Sep 22;437(7058):551-5. doi: 10.1038/nature03983.
Pubmed: 16177791
Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, Nakamura S: Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem. 2003 Nov 21;278(47):46832-9. doi: 10.1074/jbc.M306577200. Epub 2003 Sep 2.
Pubmed: 12954646
Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, Poulton S, Milstien S, Kohama T, Spiegel S: Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem. 2000 Jun 30;275(26):19513-20. doi: 10.1074/jbc.M002759200.
Pubmed: 10751414
Wiemann S, Weil B, Wellenreuther R, Gassenhuber J, Glassl S, Ansorge W, Bocher M, Blocker H, Bauersachs S, Blum H, Lauber J, Dusterhoft A, Beyer A, Kohrer K, Strack N, Mewes HW, Ottenwalder B, Obermaier B, Tampe J, Heubner D, Wambutt R, Korn B, Klein M, Poustka A: Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. Genome Res. 2001 Mar;11(3):422-35. doi: 10.1101/gr.gr1547r.
Pubmed: 11230166
Ogawa C, Kihara A, Gokoh M, Igarashi Y: Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. J Biol Chem. 2003 Jan 10;278(2):1268-72. doi: 10.1074/jbc.M209514200. Epub 2002 Oct 30.
Pubmed: 12411432
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Kai M, Wada I, Imai Si, Sakane F, Kanoh H: Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase. J Biol Chem. 1997 Sep 26;272(39):24572-8. doi: 10.1074/jbc.272.39.24572.
Pubmed: 9305923
Leung DW, Tompkins CK, White T: Molecular cloning of two alternatively spliced forms of human phosphatidic acid phosphatase cDNAs that are differentially expressed in normal and tumor cells. DNA Cell Biol. 1998 Apr;17(4):377-85. doi: 10.1089/dna.1998.17.377.
Pubmed: 9570154
Ulrix W, Swinnen JV, Heyns W, Verhoeven G: Identification of the phosphatidic acid phosphatase type 2a isozyme as an androgen-regulated gene in the human prostatic adenocarcinoma cell line LNCaP. J Biol Chem. 1998 Feb 20;273(8):4660-5. doi: 10.1074/jbc.273.8.4660.
Pubmed: 9468526
Janecke AR, Xu R, Steichen-Gersdorf E, Waldegger S, Entenmann A, Giner T, Krainer I, Huber LA, Hess MW, Frishberg Y, Barash H, Tzur S, Schreyer-Shafir N, Sukenik-Halevy R, Zehavi T, Raas-Rothschild A, Mao C, Muller T: Deficiency of the sphingosine-1-phosphate lyase SGPL1 is associated with congenital nephrotic syndrome and congenital adrenal calcifications. Hum Mutat. 2017 Apr;38(4):365-372. doi: 10.1002/humu.23192. Epub 2017 Mar 6.
Pubmed: 28181337
Linhares ND, Arantes RR, Araujo SA, Pena SDJ: Nephrotic syndrome and adrenal insufficiency caused by a variant in SGPL1. Clin Kidney J. 2018 Aug;11(4):462-467. doi: 10.1093/ckj/sfx130. Epub 2017 Nov 13.
Pubmed: 30090628
Van Veldhoven PP, Gijsbers S, Mannaerts GP, Vermeesch JR, Brys V: Human sphingosine-1-phosphate lyase: cDNA cloning, functional expression studies and mapping to chromosome 10q22(1). Biochim Biophys Acta. 2000 Sep 27;1487(2-3):128-34. doi: 10.1016/s1388-1981(00)00079-2.
Pubmed: 11018465
Mizutani Y, Kihara A, Igarashi Y: Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation. FEBS Lett. 2004 Apr 9;563(1-3):93-7. doi: 10.1016/S0014-5793(04)00274-1.
Pubmed: 15063729
Heilig R, Eckenberg R, Petit JL, Fonknechten N, Da Silva C, Cattolico L, Levy M, Barbe V, de Berardinis V, Ureta-Vidal A, Pelletier E, Vico V, Anthouard V, Rowen L, Madan A, Qin S, Sun H, Du H, Pepin K, Artiguenave F, Robert C, Cruaud C, Bruls T, Jaillon O, Friedlander L, Samson G, Brottier P, Cure S, Segurens B, Aniere F, Samain S, Crespeau H, Abbasi N, Aiach N, Boscus D, Dickhoff R, Dors M, Dubois I, Friedman C, Gouyvenoux M, James R, Madan A, Mairey-Estrada B, Mangenot S, Martins N, Menard M, Oztas S, Ratcliffe A, Shaffer T, Trask B, Vacherie B, Bellemere C, Belser C, Besnard-Gonnet M, Bartol-Mavel D, Boutard M, Briez-Silla S, Combette S, Dufosse-Laurent V, Ferron C, Lechaplais C, Louesse C, Muselet D, Magdelenat G, Pateau E, Petit E, Sirvain-Trukniewicz P, Trybou A, Vega-Czarny N, Bataille E, Bluet E, Bordelais I, Dubois M, Dumont C, Guerin T, Haffray S, Hammadi R, Muanga J, Pellouin V, Robert D, Wunderle E, Gauguet G, Roy A, Sainte-Marthe L, Verdier J, Verdier-Discala C, Hillier L, Fulton L, McPherson J, Matsuda F, Wilson R, Scarpelli C, Gyapay G, Wincker P, Saurin W, Quetier F, Waterston R, Hood L, Weissenbach J: The DNA sequence and analysis of human chromosome 14. Nature. 2003 Feb 6;421(6923):601-7. doi: 10.1038/nature01348. Epub 2003 Jan 1.
Pubmed: 12508121
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings