Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Degradation of Superoxides
Homo sapiens
Metabolic Pathway
Created: 2013-08-01
Last Updated: 2023-10-12
Reactive oxygen species (ROS) are formed by the normal metabolic process of oxygen. Examples are superoxide, oxygen ions and peroxides and can be of either organic or inorganic origin. ROS are highly reactive due to unpaired valence shell electrons, and can cause serious damage to cells and cell organelles. The environment also may cause ROS to form, from sources such as drought, air pollutants, UV light, cold temperatures, and external chemicals. An organic example of ROS being formed is during the beta oxidation of fatty acids, or photorespiration in photosynthetic organisms. Aerobic organisms who produce energy through the electron transport chain in mitochondria produce ROS as a byproduct. ROS damage commmonly includes DNA damage, lipid peroxidation, oxidation of amino acids in proteins, and oxidatively inactivating enzymes by oxidation of cofactors. Most aerobic organisms have adapted to this dangerous condition of life, and have a system of enzymes and scavenging free radicals. Enzymes such as are essential for defense against ROS, and include superoxide dismutases (SODs) and hydroperoxidase (CAT). Superoxide dismutases are the primary method of disposal of ROS, and convert superoxide radicals to hydrogen peroxide and water. Catalase attacks the hydrogen peroxide produced by SODs, and converts it into oxygen and water. In skin cells, 5,6 dihydroxyindole-2-carboxylic acid oxidase in the melanosome membranes breaks down hydrogen peroxide into water and oxygen.
References
Degradation of Superoxides References
Beauchamp C, Fridovich I: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276-87.
Pubmed: 4943714
Beauchamp C, Fridovich I: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276-87.
Pubmed: 4943714
Folz RJ, Crapo JD: Extracellular superoxide dismutase (SOD3): tissue-specific expression, genomic characterization, and computer-assisted sequence analysis of the human EC SOD gene. Genomics. 1994 Jul 1;22(1):162-71. doi: 10.1006/geno.1994.1357.
Pubmed: 7959763
Hjalmarsson K, Marklund SL, Engstrom A, Edlund T: Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6340-4. doi: 10.1073/pnas.84.18.6340.
Pubmed: 3476950
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Lin ZF, Xu HB, Wang JY, Lin Q, Ruan Z, Liu FB, Jin W, Huang HH, Chen X: SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun. 2013 Nov 8;441(1):191-5. doi: 10.1016/j.bbrc.2013.10.033. Epub 2013 Oct 16.
Pubmed: 24140062
Sherman L, Dafni N, Lieman-Hurwitz J, Groner Y: Nucleotide sequence and expression of human chromosome 21-encoded superoxide dismutase mRNA. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5465-9. doi: 10.1073/pnas.80.18.5465.
Pubmed: 6577438
Levanon D, Lieman-Hurwitz J, Dafni N, Wigderson M, Sherman L, Bernstein Y, Laver-Rudich Z, Danciger E, Stein O, Groner Y: Architecture and anatomy of the chromosomal locus in human chromosome 21 encoding the Cu/Zn superoxide dismutase. EMBO J. 1985 Jan;4(1):77-84.
Pubmed: 3160582
Kim MS, Ramakrishna S, Lim KH, Kim JH, Baek KH: Protein stability of mitochondrial superoxide dismutase SOD2 is regulated by USP36. J Cell Biochem. 2011 Feb;112(2):498-508. doi: 10.1002/jcb.22940.
Pubmed: 21268071
Wispe JR, Clark JC, Burhans MS, Kropp KE, Korfhagen TR, Whitsett JA: Synthesis and processing of the precursor for human mangano-superoxide dismutase. Biochim Biophys Acta. 1989 Jan 19;994(1):30-6. doi: 10.1016/0167-4838(89)90058-7.
Pubmed: 2462451
Beck Y, Oren R, Amit B, Levanon A, Gorecki M, Hartman JR: Human Mn superoxide dismutase cDNA sequence. Nucleic Acids Res. 1987 Nov 11;15(21):9076. doi: 10.1093/nar/15.21.9076.
Pubmed: 3684581
Quan F, Korneluk RG, Tropak MB, Gravel RA: Isolation and characterization of the human catalase gene. Nucleic Acids Res. 1986 Jul 11;14(13):5321-35. doi: 10.1093/nar/14.13.5321.
Pubmed: 3755525
Bell GI, Najarian RC, Mullenbach GT, Hallewell RA: cDNA sequence coding for human kidney catalase. Nucleic Acids Res. 1986 Jul 11;14(13):5561-2.
Pubmed: 3755526
Jin LH, Bahn JH, Eum WS, Kwon HY, Jang SH, Han KH, Kang TC, Won MH, Kang JH, Cho SW, Park J, Choi SY: Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radic Biol Med. 2001 Dec 1;31(11):1509-19.
Pubmed: 11728823
Sturm RA, O'Sullivan BJ, Box NF, Smith AG, Smit SE, Puttick ER, Parsons PG, Dunn IS: Chromosomal structure of the human TYRP1 and TYRP2 loci and comparison of the tyrosinase-related protein gene family. Genomics. 1995 Sep 1;29(1):24-34. doi: 10.1006/geno.1995.1211.
Pubmed: 8530077
Kenny EE, Timpson NJ, Sikora M, Yee MC, Moreno-Estrada A, Eng C, Huntsman S, Burchard EG, Stoneking M, Bustamante CD, Myles S: Melanesian blond hair is caused by an amino acid change in TYRP1. Science. 2012 May 4;336(6081):554. doi: 10.1126/science.1217849.
Pubmed: 22556244
Rooryck C, Roudaut C, Robine E, Musebeck J, Arveiler B: Oculocutaneous albinism with TYRP1 gene mutations in a Caucasian patient. Pigment Cell Res. 2006 Jun;19(3):239-42. doi: 10.1111/j.1600-0749.2006.00298.x.
Pubmed: 16704458
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings