Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Apoptotic DNA Fragmentation and Tissue Homeostasis
Homo sapiens
Protein Pathway
Created: 2018-06-13
Last Updated: 2019-08-16
Apoptotic endonucleases degrade chromosomal DNA during programmed cell death. ICAD and CAD exist in the nucleus in normal cells and is a major endonuclease in apoptosis. Its activation is normally caspase dependent. EndoG resides in mitochondria in normal cells and travels to the nucleus, where it fragments chromosomal DNA upon activation of apoptosis. Once released from the mitochondrial intermembrane space, EndoG activity is caspase independent.
References
Apoptotic DNA Fragmentation and Tissue Homeostasis References
Zhang J, Xu M: Apoptotic DNA fragmentation and tissue homeostasis. Trends Cell Biol. 2002 Feb;12(2):84-9.
Pubmed: 11849972
https://cgap.nci.nih.gov/Pathways/BioCarta/h_DNAfragmentPathway
Tiranti V, Rossi E, Ruiz-Carrillo A, Rossi G, Rocchi M, DiDonato S, Zuffardi O, Zeviani M: Chromosomal localization of mitochondrial transcription factor A (TCF6), single-stranded DNA-binding protein (SSBP), and endonuclease G (ENDOG), three human housekeeping genes involved in mitochondrial biogenesis. Genomics. 1995 Jan 20;25(2):559-64.
Pubmed: 7789991
Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blocker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J, Dunham I: DNA sequence and analysis of human chromosome 9. Nature. 2004 May 27;429(6990):369-74. doi: 10.1038/nature02465.
Pubmed: 15164053
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Davidson JN, Rao GN, Niswander L, Andreano C, Tamer C, Chen KC: Organization and nucleotide sequence of the 3' end of the human CAD gene. DNA Cell Biol. 1990 Nov;9(9):667-76. doi: 10.1089/dna.1990.9.667.
Pubmed: 1979741
Sigoillot FD, Kotsis DH, Serre V, Sigoillot SM, Evans DR, Guy HI: Nuclear localization and mitogen-activated protein kinase phosphorylation of the multifunctional protein CAD. J Biol Chem. 2005 Jul 8;280(27):25611-20. doi: 10.1074/jbc.M504581200. Epub 2005 May 12.
Pubmed: 15890648
Iwahana H, Fujimura M, Ii S, Kondo M, Moritani M, Takahashi Y, Yamaoka T, Yoshimoto K, Itakura M: Molecular cloning of a human cDNA encoding a trifunctional enzyme of carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase in de Novo pyrimidine synthesis. Biochem Biophys Res Commun. 1996 Feb 6;219(1):249-55. doi: 10.1006/bbrc.1996.0213.
Pubmed: 8619816
Lang AJ, Mirski SE, Cummings HJ, Yu Q, Gerlach JH, Cole SP: Structural organization of the human TOP2A and TOP2B genes. Gene. 1998 Oct 23;221(2):255-66. doi: 10.1016/s0378-1119(98)00468-5.
Pubmed: 9795238
Tsai-Pflugfelder M, Liu LF, Liu AA, Tewey KM, Whang-Peng J, Knutsen T, Huebner K, Croce CM, Wang JC: Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7177-81. doi: 10.1073/pnas.85.19.7177.
Pubmed: 2845399
Wasserman RA, Austin CA, Fisher LM, Wang JC: Use of yeast in the study of anticancer drugs targeting DNA topoisomerases: expression of a functional recombinant human DNA topoisomerase II alpha in yeast. Cancer Res. 1993 Aug 1;53(15):3591-6.
Pubmed: 8393377
Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A, Bianchi ME: Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003 Oct 15;22(20):5551-60. doi: 10.1093/emboj/cdg516.
Pubmed: 14532127
Yuan F, Gu L, Guo S, Wang C, Li GM: Evidence for involvement of HMGB1 protein in human DNA mismatch repair. J Biol Chem. 2004 May 14;279(20):20935-40. doi: 10.1074/jbc.M401931200. Epub 2004 Mar 9.
Pubmed: 15014079
Bell CW, Jiang W, Reich CF 3rd, Pisetsky DS: The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol. 2006 Dec;291(6):C1318-25. doi: 10.1152/ajpcell.00616.2005. Epub 2006 Jul 19.
Pubmed: 16855214
Pallier C, Scaffidi P, Chopineau-Proust S, Agresti A, Nordmann P, Bianchi ME, Marechal V: Association of chromatin proteins high mobility group box (HMGB) 1 and HMGB2 with mitotic chromosomes. Mol Biol Cell. 2003 Aug;14(8):3414-26. doi: 10.1091/mbc.e02-09-0581. Epub 2003 Apr 17.
Pubmed: 12925773
Laurent B, Randrianarison-Huetz V, Marechal V, Mayeux P, Dusanter-Fourt I, Dumenil D: High-mobility group protein HMGB2 regulates human erythroid differentiation through trans-activation of GFI1B transcription. Blood. 2010 Jan 21;115(3):687-95. doi: 10.1182/blood-2009-06-230094. Epub 2009 Nov 24.
Pubmed: 19965638
Majumdar A, Brown D, Kerby S, Rudzinski I, Polte T, Randhawa Z, Seidman MM: Sequence of human HMG2 cDNA. Nucleic Acids Res. 1991 Dec 11;19(23):6643. doi: 10.1093/nar/19.23.6643.
Pubmed: 1754403
Liu X, Zou H, Slaughter C, Wang X: DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 1997 Apr 18;89(2):175-84. doi: 10.1016/s0092-8674(00)80197-x.
Pubmed: 9108473
Gu J, Dong RP, Zhang C, McLaughlin DF, Wu MX, Schlossman SF: Functional interaction of DFF35 and DFF45 with caspase-activated DNA fragmentation nuclease DFF40. J Biol Chem. 1999 Jul 23;274(30):20759-62. doi: 10.1074/jbc.274.30.20759.
Pubmed: 10409614
Oh JJ, Grosshans DR, Wong SG, Slamon DJ: Identification of differentially expressed genes associated with HER-2/neu overexpression in human breast cancer cells. Nucleic Acids Res. 1999 Oct 15;27(20):4008-17. doi: 10.1093/nar/27.20.4008.
Pubmed: 10497265
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings