Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Toll-Like Receptor Pathway 2
Homo sapiens
Protein Pathway
Created: 2018-08-01
Last Updated: 2019-08-16
Toll-like receptors (TLRs) are a type of pattern recognition receptor that spans the cell membrane and recognizes conserved microbial molecules. TLRs get their name from the toll gene in Drosophila, which produces a protein that is similar in structure to TLR proteins. Each TLR is able to recognize specific unique molecules associated with pathogens, including lipoproteins, lipopolysaccharides, double stranded RNA, flagellin and others. Recognition of pathogen molecules allows the immune system to detect extracellular pathogens.
TLR2 can form heterodimers on the surface of the cell's plasma membrane with either TLR1 or TLR6. These dimers, along with another protein known as CD14 as a cofactor, can detect different microbial lipoproteins. Following binding of lipoproteins to these complexes, they activate a protein known as myeloid differentiation primary response protein (MyD88). MyD88 then joins with interleukin-1 receptor-associated kinase 1 (IRAK1) to form a complex.
TLR4 is another TLR that detects lipopolysaccharides (LPS) that make up the outer membrane of Gram-negative bacteria. It associates with two other proteins, monocyte differentiation antigen CD14, and lymphocyte antigen 96 (MD2), which allow it to better bind LPS. Once LPS has bound to the complex, it activates signalling to the toll/interleukin-1 receptor domain-containing adaptor protein (TIRAP) and Toll-interacting protein (TOLLIP), which then recruit MyD99 and IRAK1 to the TLR on the cell surface.
Other TLRs have slightly more simple pathways, including TLR9, which recognizes CpG-DNA, which is a section of DNA with a cytosine followed by a guanine and are found commonly in pathogen genomes. TLRs 3 and 8 both recognize double stranded RNA, which is found in some viruses. TLR7 recognizes single stranded RNA from internalized viral genomes, and can also be activated by the drug Imiquimod, sold as Aldara. Imiquimod is used to treat genital warts , actinic keratosis and basal cell carcinoma by activating the immune system in the area it was applied. Finally, TLR5 recognizes the bacterial flagellin proteins. When any of these substances bind their respective TLRs, the TLRs signal to the MyD88 and IRAK1 complex.
After any of these activation mechanisms occurs, the IRAK protein, which is a kinase, phosphorylates and activates TNF receptor-associated factor 6 (TRAF6). TRAF6 then interacts with the evolutionarily conserved signaling intermediate in Toll pathway (ECSIT). ECSIT then activates mitogen-activated protein kinase kinase kinase 1 (MAP3K1). This then phosphorylates the IKK complex, comprised of inhibitors of nuclear factor kappa-B kinase subunits alpha and beta (IKKA and IKKB), as well as its regulatory subunit, NF-kappa-B essential modulator (NEMO).
Another pathway starting with the activation of TRAF6 leads to this same point. First, TRAF6 activates a complex consisting of mitogen-activated protein kinase kinase kinase 7 (MAP3K7), as well as TGF-beta-activated kinase 1 (TAK1) and MAP3K7-binding proteins 1, 2 and 3. This complex can then activate dual specificity mitogen-activated protein kinase kinase 4 (MAP2K4), which then phosphorylates mitogen-activated protein kinase 8 (MAPK8) in the cell nucleus. Alternately, the TAK1 and MAP3K7-binding complex can phosphorylate and activate mitogen-activated protein kinase 14 (MAPK14), which then phosphorylates the IKK complex.
NF-kappa-B is a transcription factor that is inhibited by NF-kappa-B inhibitor alpha, which binds to it and blocks its nuclear localization sequence, holding it in the cytoplasm rather than allowing it to enter the nucleus and transcribe the DNA. However, the IKK complex is able to phosphorylate the inhibitor, removing it and allowing nuclear factor NF-kappa-B p105 subunit and transcription factor p65 to enter the nucleus to transcribe DNA and allow the appropriate immune response for the stimulus to be activated.
References
Toll-Like Receptor Pathway 2 References
Kawasaki T, Kawai T: Toll-like receptor signaling pathways. Front Immunol. 2014 Sep 25;5:461. doi: 10.3389/fimmu.2014.00461. eCollection 2014.
Pubmed: 25309543
https://www.cellsignal.com/contents/science-cst-pathways-immunology-and-inflammation/toll-like-receptors-(tlrs)-interactive-pathway/pathways-tlr
https://www.genome.jp/kegg-bin/show_pathway?hsa04620
https://cgap.nci.nih.gov/Pathways/BioCarta/h_tollPathway
Haziot A, Chen S, Ferrero E, Low MG, Silber R, Goyert SM: The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol. 1988 Jul 15;141(2):547-52.
Pubmed: 3385210
Ferrero E, Goyert SM: Nucleotide sequence of the gene encoding the monocyte differentiation antigen, CD14. Nucleic Acids Res. 1988 May 11;16(9):4173. doi: 10.1093/nar/16.9.4173.
Pubmed: 2453848
Setoguchi M, Nasu N, Yoshida S, Higuchi Y, Akizuki S, Yamamoto S: Mouse and human CD14 (myeloid cell-specific leucine-rich glycoprotein) primary structure deduced from cDNA clones. Biochim Biophys Acta. 1989 Jul 7;1008(2):213-22. doi: 10.1016/0167-4781(80)90012-3.
Pubmed: 2472171
Bulut Y, Faure E, Thomas L, Equils O, Arditi M: Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol. 2001 Jul 15;167(2):987-94. doi: 10.4049/jimmunol.167.2.987.
Pubmed: 11441107
Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T, Triantafilou K: Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem. 2006 Oct 13;281(41):31002-11. doi: 10.1074/jbc.M602794200. Epub 2006 Jul 31.
Pubmed: 16880211
Drage MG, Pecora ND, Hise AG, Febbraio M, Silverstein RL, Golenbock DT, Boom WH, Harding CV: TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 2009;258(1):29-37. doi: 10.1016/j.cellimm.2009.03.008. Epub 2009 Apr 11.
Pubmed: 19362712
Takeuchi O, Kawai T, Sanjo H, Copeland NG, Gilbert DJ, Jenkins NA, Takeda K, Akira S: TLR6: A novel member of an expanding toll-like receptor family. Gene. 1999 Apr 29;231(1-2):59-65. doi: 10.1016/s0378-1119(99)00098-0.
Pubmed: 10231569
Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A: Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics. 2008 Dec;60(12):727-35. doi: 10.1007/s00251-008-0332-0. Epub 2008 Sep 23.
Pubmed: 18810425
Hillier LW, Graves TA, Fulton RS, Fulton LA, Pepin KH, Minx P, Wagner-McPherson C, Layman D, Wylie K, Sekhon M, Becker MC, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Kremitzki C, Oddy L, Du H, Sun H, Bradshaw-Cordum H, Ali J, Carter J, Cordes M, Harris A, Isak A, van Brunt A, Nguyen C, Du F, Courtney L, Kalicki J, Ozersky P, Abbott S, Armstrong J, Belter EA, Caruso L, Cedroni M, Cotton M, Davidson T, Desai A, Elliott G, Erb T, Fronick C, Gaige T, Haakenson W, Haglund K, Holmes A, Harkins R, Kim K, Kruchowski SS, Strong CM, Grewal N, Goyea E, Hou S, Levy A, Martinka S, Mead K, McLellan MD, Meyer R, Randall-Maher J, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Shah N, Swearengen-Shahid S, Snider J, Strong JT, Thompson J, Yoakum M, Leonard S, Pearman C, Trani L, Radionenko M, Waligorski JE, Wang C, Rock SM, Tin-Wollam AM, Maupin R, Latreille P, Wendl MC, Yang SP, Pohl C, Wallis JW, Spieth J, Bieri TA, Berkowicz N, Nelson JO, Osborne J, Ding L, Meyer R, Sabo A, Shotland Y, Sinha P, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Jones TA, She X, Ciccarelli FD, Izaurralde E, Taylor J, Schmutz J, Myers RM, Cox DR, Huang X, McPherson JD, Mardis ER, Clifton SW, Warren WC, Chinwalla AT, Eddy SR, Marra MA, Ovcharenko I, Furey TS, Miller W, Eichler EE, Bork P, Suyama M, Torrents D, Waterston RH, Wilson RK: Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature. 2005 Apr 7;434(7034):724-31. doi: 10.1038/nature03466.
Pubmed: 15815621
Johnson CM, Lyle EA, Omueti KO, Stepensky VA, Yegin O, Alpsoy E, Hamann L, Schumann RR, Tapping RI: Cutting edge: A common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol. 2007 Jun 15;178(12):7520-4. doi: 10.4049/jimmunol.178.12.7520.
Pubmed: 17548585
Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO: Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell. 2007 Sep 21;130(6):1071-82. doi: 10.1016/j.cell.2007.09.008.
Pubmed: 17889651
Schuring RP, Hamann L, Faber WR, Pahan D, Richardus JH, Schumann RR, Oskam L: Polymorphism N248S in the human Toll-like receptor 1 gene is related to leprosy and leprosy reactions. J Infect Dis. 2009 Jun 15;199(12):1816-9. doi: 10.1086/599121.
Pubmed: 19456232
George J, Motshwene PG, Wang H, Kubarenko AV, Rautanen A, Mills TC, Hill AV, Gay NJ, Weber AN: Two human MYD88 variants, S34Y and R98C, interfere with MyD88-IRAK4-myddosome assembly. J Biol Chem. 2011 Jan 14;286(2):1341-53. doi: 10.1074/jbc.M110.159996. Epub 2010 Oct 21.
Pubmed: 20966070
Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, Shaffer AL, Romesser P, Wright G, Powell J, Rosenwald A, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Staudt LM: Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011 Feb 3;470(7332):115-9. doi: 10.1038/nature09671. Epub 2010 Dec 22.
Pubmed: 21179087
Hardiman G, Rock FL, Balasubramanian S, Kastelein RA, Bazan JF: Molecular characterization and modular analysis of human MyD88. Oncogene. 1996 Dec 5;13(11):2467-75.
Pubmed: 8957090
Jensen LE, Whitehead AS: IRAK1b, a novel alternative splice variant of interleukin-1 receptor-associated kinase (IRAK), mediates interleukin-1 signaling and has prolonged stability. J Biol Chem. 2001 Aug 3;276(31):29037-44. doi: 10.1074/jbc.M103815200. Epub 2001 Jun 7.
Pubmed: 11397809
Strelow A, Kollewe C, Wesche H: Characterization of Pellino2, a substrate of IRAK1 and IRAK4. FEBS Lett. 2003 Jul 17;547(1-3):157-61. doi: 10.1016/s0014-5793(03)00697-5.
Pubmed: 12860405
Huang Y, Li T, Sane DC, Li L: IRAK1 serves as a novel regulator essential for lipopolysaccharide-induced interleukin-10 gene expression. J Biol Chem. 2004 Dec 3;279(49):51697-703. doi: 10.1074/jbc.M410369200. Epub 2004 Oct 1.
Pubmed: 15465816
Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV: TRAF6 is a signal transducer for interleukin-1. Nature. 1996 Oct 3;383(6599):443-6. doi: 10.1038/383443a0.
Pubmed: 8837778
Khursigara G, Orlinick JR, Chao MV: Association of the p75 neurotrophin receptor with TRAF6. J Biol Chem. 1999 Jan 29;274(5):2597-600. doi: 10.1074/jbc.274.5.2597.
Pubmed: 9915784
Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, Choi Y: TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell. 1999 Dec;4(6):1041-9.
Pubmed: 10635328
Smirnova I, Poltorak A, Chan EK, McBride C, Beutler B: Phylogenetic variation and polymorphism at the toll-like receptor 4 locus (TLR4). Genome Biol. 2000;1(1):RESEARCH002. doi: 10.1186/gb-2000-1-1-research002. Epub 2000 Apr 27.
Pubmed: 11104518
Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA: TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000 Jun;25(2):187-91. doi: 10.1038/76048.
Pubmed: 10835634
da Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ: Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J Biol Chem. 2001 Jun 15;276(24):21129-35. doi: 10.1074/jbc.M009164200. Epub 2001 Mar 26.
Pubmed: 11274165
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings