Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Fructose Intolerance, Hereditary
Homo sapiens
Disease Pathway
Created: 2014-06-23
Last Updated: 2022-12-13
Hereditary fructose intolerance, also called hereditary fructose-1-phosphate aldolase deficiency or hereditary fructosemia, is rare inborn error of metabolism (IEM) and autosomal recessive disorder of the fructose and mannose degradation pathway. It is caused by a mutation in the ALDOB gene, which encodes fructose-bisphosphatse aldolase B, also known as aldolase B or liver-type aldolase. This enzyme normally cleaves fructose 1,6-bisphosphate into dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate, isomers of one another that are later used in glycolysis. Hereditary fructose intolerance is characterized by an accumulation of fructose-1-phosphate in the liver, as well as a depletion of ATP due to glycolysis having less input than necessary. Symptoms of this disorder include hypoglycemia, abdominal pain and vomiting as well as other symptoms after ingesting fructose. After repeated ingestion of fructose, liver and kidney damage can occur, as well as growth retardation, seizures, and even death. Hereditary fructose intolerance can be treated by eliminating fructose from the diet, and multivitamins can be prescribed to make up for the lack of fruits, a major source of fructose, in the diet. It is estimated that hereditary fructose intolerance affects 1 in between 20,000 and 30,000 individuals.
References
Fructose Intolerance, Hereditary References
Perheentupa J, Raivio KO, Nikkila EA: Hereditary fructose intolerance. Acta Med Scand Suppl. 1972;542:65-75.
Pubmed: 4579755
Oppelt SA, Sennott EM, Tolan DR: Aldolase-B knockout in mice phenocopies hereditary fructose intolerance in humans. Mol Genet Metab. 2015 Mar;114(3):445-50. doi: 10.1016/j.ymgme.2015.01.001. Epub 2015 Jan 22.
Pubmed: 25637246
Fructose and Mannose Degradation References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Sharma V, Ichikawa M, Freeze HH: Mannose metabolism: more than meets the eye. Biochem Biophys Res Commun. 2014 Oct 17;453(2):220-8. doi: 10.1016/j.bbrc.2014.06.021. Epub 2014 Jun 12.
Pubmed: 24931670
Sun SZ, Empie MW: Fructose metabolism in humans - what isotopic tracer studies tell us. Nutr Metab (Lond). 2012 Oct 2;9(1):89. doi: 10.1186/1743-7075-9-89.
Pubmed: 23031075
Ferraretto A, Negri A, Giuliani A, De Grada L, Fuhrman Conti AM, Ronchi S: Aldose reductase is involved in long-term adaptation of EUE cells to hyperosmotic stress. Biochim Biophys Acta. 1993 Feb 17;1175(3):283-8. doi: 10.1016/0167-4889(93)90218-e.
Pubmed: 8435445
Morjana NA, Lyons C, Flynn TG: Aldose reductase from human psoas muscle. Affinity labeling of an active site lysine by pyridoxal 5'-phosphate and pyridoxal 5'-diphospho-5'-adenosine. J Biol Chem. 1989 Feb 15;264(5):2912-9.
Pubmed: 2492527
Bohren KM, Bullock B, Wermuth B, Gabbay KH: The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J Biol Chem. 1989 Jun 5;264(16):9547-51.
Pubmed: 2498333
Iwata T, Popescu NC, Zimonjic DB, Karlsson C, Hoog JO, Vaca G, Rodriguez IR, Carper D: Structural organization of the human sorbitol dehydrogenase gene (SORD). Genomics. 1995 Mar 1;26(1):55-62.
Pubmed: 7782086
Lee FK, Cheung MC, Chung S: The human sorbitol dehydrogenase gene: cDNA cloning, sequence determination, and mapping by fluorescence in situ hybridization. Genomics. 1994 May 15;21(2):354-8. doi: 10.1006/geno.1994.1276.
Pubmed: 8088829
Carr IM, Markham AF, Coletta PL: Identification and characterisation of a sequence related to human sorbitol dehydrogenase. Eur J Biochem. 1997 May 1;245(3):760-7. doi: 10.1111/j.1432-1033.1997.00760.x.
Pubmed: 9183016
Ek P, Ek B, Zetterqvist O: Phosphohistidine phosphatase 1 (PHPT1) also dephosphorylates phospholysine of chemically phosphorylated histone H1 and polylysine. Ups J Med Sci. 2015 Mar;120(1):20-7. doi: 10.3109/03009734.2014.996720. Epub 2015 Jan 9.
Pubmed: 25574816
Ek P, Pettersson G, Ek B, Gong F, Li JP, Zetterqvist O: Identification and characterization of a mammalian 14-kDa phosphohistidine phosphatase. Eur J Biochem. 2002 Oct;269(20):5016-23. doi: 10.1046/j.1432-1033.2002.03206.x.
Pubmed: 12383260
Hu RM, Han ZG, Song HD, Peng YD, Huang QH, Ren SX, Gu YJ, Huang CH, Li YB, Jiang CL, Fu G, Zhang QH, Gu BW, Dai M, Mao YF, Gao GF, Rong R, Ye M, Zhou J, Xu SH, Gu J, Shi JX, Jin WR, Zhang CK, Wu TM, Huang GY, Chen Z, Chen MD, Chen JL: Gene expression profiling in the human hypothalamus-pituitary-adrenal axis and full-length cDNA cloning. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9543-8. doi: 10.1073/pnas.160270997.
Pubmed: 10931946
Nishi S, Seino S, Bell GI: Human hexokinase: sequences of amino- and carboxyl-terminal halves are homologous. Biochem Biophys Res Commun. 1988 Dec 30;157(3):937-43. doi: 10.1016/s0006-291x(88)80964-1.
Pubmed: 3207429
Ruzzo A, Andreoni F, Magnani M: Structure of the human hexokinase type I gene and nucleotide sequence of the 5' flanking region. Biochem J. 1998 Apr 15;331 ( Pt 2):607-13. doi: 10.1042/bj3310607.
Pubmed: 9531504
Deloukas P, Earthrowl ME, Grafham DV, Rubenfield M, French L, Steward CA, Sims SK, Jones MC, Searle S, Scott C, Howe K, Hunt SE, Andrews TD, Gilbert JG, Swarbreck D, Ashurst JL, Taylor A, Battles J, Bird CP, Ainscough R, Almeida JP, Ashwell RI, Ambrose KD, Babbage AK, Bagguley CL, Bailey J, Banerjee R, Bates K, Beasley H, Bray-Allen S, Brown AJ, Brown JY, Burford DC, Burrill W, Burton J, Cahill P, Camire D, Carter NP, Chapman JC, Clark SY, Clarke G, Clee CM, Clegg S, Corby N, Coulson A, Dhami P, Dutta I, Dunn M, Faulkner L, Frankish A, Frankland JA, Garner P, Garnett J, Gribble S, Griffiths C, Grocock R, Gustafson E, Hammond S, Harley JL, Hart E, Heath PD, Ho TP, Hopkins B, Horne J, Howden PJ, Huckle E, Hynds C, Johnson C, Johnson D, Kana A, Kay M, Kimberley AM, Kershaw JK, Kokkinaki M, Laird GK, Lawlor S, Lee HM, Leongamornlert DA, Laird G, Lloyd C, Lloyd DM, Loveland J, Lovell J, McLaren S, McLay KE, McMurray A, Mashreghi-Mohammadi M, Matthews L, Milne S, Nickerson T, Nguyen M, Overton-Larty E, Palmer SA, Pearce AV, Peck AI, Pelan S, Phillimore B, Porter K, Rice CM, Rogosin A, Ross MT, Sarafidou T, Sehra HK, Shownkeen R, Skuce CD, Smith M, Standring L, Sycamore N, Tester J, Thorpe A, Torcasso W, Tracey A, Tromans A, Tsolas J, Wall M, Walsh J, Wang H, Weinstock K, West AP, Willey DL, Whitehead SL, Wilming L, Wray PW, Young L, Chen Y, Lovering RC, Moschonas NK, Siebert R, Fechtel K, Bentley D, Durbin R, Hubbard T, Doucette-Stamm L, Beck S, Smith DR, Rogers J: The DNA sequence and comparative analysis of human chromosome 10. Nature. 2004 May 27;429(6990):375-81. doi: 10.1038/nature02462.
Pubmed: 15164054
Schollen E, Dorland L, de Koning TJ, Van Diggelen OP, Huijmans JG, Marquardt T, Babovic-Vuksanovic D, Patterson M, Imtiaz F, Winchester B, Adamowicz M, Pronicka E, Freeze H, Matthijs G: Genomic organization of the human phosphomannose isomerase (MPI) gene and mutation analysis in patients with congenital disorders of glycosylation type Ib (CDG-Ib). Hum Mutat. 2000 Sep;16(3):247-52. doi: 10.1002/1098-1004(200009)16:3<247::AID-HUMU7>3.0.CO;2-A.
Pubmed: 10980531
Proudfoot AE, Turcatti G, Wells TN, Payton MA, Smith DJ: Purification, cDNA cloning and heterologous expression of human phosphomannose isomerase. Eur J Biochem. 1994 Jan 15;219(1-2):415-23. doi: 10.1111/j.1432-1033.1994.tb19954.x.
Pubmed: 8307007
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Matthijs G, Schollen E, Pirard M, Budarf ML, Van Schaftingen E, Cassiman JJ: PMM (PMM1), the human homologue of SEC53 or yeast phosphomannomutase, is localized on chromosome 22q13. Genomics. 1997 Feb 15;40(1):41-7. doi: 10.1006/geno.1996.4536.
Pubmed: 9070917
Wada Y, Sakamoto M: Isolation of the human phosphomannomutase gene (PMM1) and assignment to chromosome 22q13. Genomics. 1997 Feb 1;39(3):416-7. doi: 10.1006/geno.1996.4487.
Pubmed: 9119384
Collins JE, Wright CL, Edwards CA, Davis MP, Grinham JA, Cole CG, Goward ME, Aguado B, Mallya M, Mokrab Y, Huckle EJ, Beare DM, Dunham I: A genome annotation-driven approach to cloning the human ORFeome. Genome Biol. 2004;5(10):R84. doi: 10.1186/gb-2004-5-10-r84. Epub 2004 Sep 30.
Pubmed: 15461802
Levanon D, Danciger E, Dafni N, Bernstein Y, Elson A, Moens W, Brandeis M, Groner Y: The primary structure of human liver type phosphofructokinase and its comparison with other types of PFK. DNA. 1989 Dec;8(10):733-43. doi: 10.1089/dna.1989.8.733.
Pubmed: 2533063
Elson A, Levanon D, Brandeis M, Dafni N, Bernstein Y, Danciger E, Groner Y: The structure of the human liver-type phosphofructokinase gene. Genomics. 1990 May;7(1):47-56.
Pubmed: 2139864
Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, Totoki Y, Choi DK, Groner Y, Soeda E, Ohki M, Takagi T, Sakaki Y, Taudien S, Blechschmidt K, Polley A, Menzel U, Delabar J, Kumpf K, Lehmann R, Patterson D, Reichwald K, Rump A, Schillhabel M, Schudy A, Zimmermann W, Rosenthal A, Kudoh J, Schibuya K, Kawasaki K, Asakawa S, Shintani A, Sasaki T, Nagamine K, Mitsuyama S, Antonarakis SE, Minoshima S, Shimizu N, Nordsiek G, Hornischer K, Brant P, Scharfe M, Schon O, Desario A, Reichelt J, Kauer G, Blocker H, Ramser J, Beck A, Klages S, Hennig S, Riesselmann L, Dagand E, Haaf T, Wehrmeyer S, Borzym K, Gardiner K, Nizetic D, Francis F, Lehrach H, Reinhardt R, Yaspo ML: The DNA sequence of human chromosome 21. Nature. 2000 May 18;405(6784):311-9. doi: 10.1038/35012518.
Pubmed: 10830953
el-Maghrabi MR, Lange AJ, Jiang W, Yamagata K, Stoffel M, Takeda J, Fernald AA, Le Beau MM, Bell GI, Baker L, et al.: Human fructose-1,6-bisphosphatase gene (FBP1): exon-intron organization, localization to chromosome bands 9q22.2-q22.3, and mutation screening in subjects with fructose-1,6-bisphosphatase deficiency. Genomics. 1995 Jun 10;27(3):520-5.
Pubmed: 7558035
Solomon DH, Raynal MC, Tejwani GA, Cayre YE: Activation of the fructose 1,6-bisphosphatase gene by 1,25-dihydroxyvitamin D3 during monocytic differentiation. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6904-8. doi: 10.1073/pnas.85.18.6904.
Pubmed: 2842796
el-Maghrabi MR, Gidh-Jain M, Austin LR, Pilkis SJ: Isolation of a human liver fructose-1,6-bisphosphatase cDNA and expression of the protein in Escherichia coli. Role of ASP-118 and ASP-121 in catalysis. J Biol Chem. 1993 May 5;268(13):9466-72.
Pubmed: 8387495
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings