Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
LPS and Citrate Signaling and Inflammation
Homo sapiens
Protein Pathway
Created: 2018-08-20
Last Updated: 2019-09-04
Lipopolysaccharides (LPS) are essential to the structure and function of the Gram-negative bacterial outer membrane, providing both stability (via an increased negative charge) and protection. Also referred to as lipoglycans and endotoxins, these large molecules are potent activators of animal immune systems. Following detection by macrophage and dendritic cell TLR4 (Toll-like receptor 4), signalling cascades activate transcription factors such as NF-κB which lead to the production of pro-inflammatory molecules (e.g. cytokines, prostaglandins, ROS, and nitric oxide). Inflammation, the body's response to infection and injury, is vital for the elimination of harmful irritants and the initiation of tissue repair. The production of citrate is upregulated in LPS-activated dendritic cells (via upregulation of glycolysis) in order to increase the rate of fatty acid biosynthesis. Fatty acids are vital for cytokine production and for extending the cell membrane in order to allow for more antigens to be presented. A mitochondrial citrate transport protein exports citrate into the cytoplasm where it is catabolized into acetyl-CoA and oxaloacetate. Acetyl-CoA is incorporated into phospholipids and used to acetylate proteins. Oxaloacetate can be broken down further into NADPH which is required to synthesize reactive oxygen species (ROS) and nitric oxide (NO).
References
LPS and Citrate Signaling and Inflammation References
Iacobazzi V, Infantino V: Citrate--new functions for an old metabolite. Biol Chem. 2014 Apr;395(4):387-99. doi: 10.1515/hsz-2013-0271.
Pubmed: 24445237
Ashbrook MJ, McDonough KL, Pituch JJ, Christopherson PL, Cornell TT, Selewski DT, Shanley TP, Blatt NB: Citrate modulates lipopolysaccharide-induced monocyte inflammatory responses. Clin Exp Immunol. 2015 Jun;180(3):520-30. doi: 10.1111/cei.12591. Epub 2015 Apr 19.
Pubmed: 25619261
Mills E, O'Neill LA: Succinate: a metabolic signal in inflammation. Trends Cell Biol. 2014 May;24(5):313-20. doi: 10.1016/j.tcb.2013.11.008. Epub 2013 Dec 19.
Pubmed: 24361092
Williams NC, O'Neill LAJ: A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation. Front Immunol. 2018 Feb 5;9:141. doi: 10.3389/fimmu.2018.00141. eCollection 2018.
Pubmed: 29459863
O'Neill LA: A critical role for citrate metabolism in LPS signalling. Biochem J. 2011 Sep 15;438(3):e5-6. doi: 10.1042/BJ20111386.
Pubmed: 21867483
Goldenthal MJ, Marin-Garcia J, Ananthakrishnan R: Cloning and molecular analysis of the human citrate synthase gene. Genome. 1998 Oct;41(5):733-8.
Pubmed: 9809442
Liu Q, Yu L, Han XF, Fu Q, Zhang JX, Tang H, Zhao SY: [Cloning and tissue expression pattern analysis of the human citrate synthase cDNA]. Shi Yan Sheng Wu Xue Bao. 2000 Sep;33(3):207-14.
Pubmed: 12549038
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Majd H, King MS, Smith AC, Kunji ERS: Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis. Biochim Biophys Acta Bioenerg. 2018 Jan;1859(1):1-7. doi: 10.1016/j.bbabio.2017.10.002. Epub 2017 Oct 12.
Pubmed: 29031613
Edvardson S, Porcelli V, Jalas C, Soiferman D, Kellner Y, Shaag A, Korman SH, Pierri CL, Scarcia P, Fraenkel ND, Segel R, Schechter A, Frumkin A, Pines O, Saada A, Palmieri L, Elpeleg O: Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in SLC25A1 encoding the mitochondrial citrate transporter. J Med Genet. 2013 Apr;50(4):240-5. doi: 10.1136/jmedgenet-2012-101485. Epub 2013 Feb 7.
Pubmed: 23393310
Cohen I, Staretz-Chacham O, Wormser O, Perez Y, Saada A, Kadir R, Birk OS: A novel homozygous SLC25A1 mutation with impaired mitochondrial complex V: Possible phenotypic expansion. Am J Med Genet A. 2018 Feb;176(2):330-336. doi: 10.1002/ajmg.a.38574. Epub 2017 Dec 11.
Pubmed: 29226520
Heinisch J, Ritzel RG, von Borstel RC, Aguilera A, Rodicio R, Zimmermann FK: The phosphofructokinase genes of yeast evolved from two duplication events. Gene. 1989 May 30;78(2):309-21. doi: 10.1016/0378-1119(89)90233-3.
Pubmed: 2528496
Guerreiro P, Azevedo D, Barreiros T, Rodrigues-Pousada C: Sequencing of a 9.9 kb segment on the right arm of yeast chromosome VII reveals four open reading frames, including PFK1, the gene coding for succinyl-CoA synthetase (beta-chain) and two ORFs sharing homology with ORFs of the yeast chromosome VIII. Yeast. 1997 Mar 15;13(3):275-80. doi: 10.1002/(SICI)1097-0061(19970315)13:3<275::AID-YEA73>3.0.CO;2-G.
Pubmed: 9090057
Tettelin H, Agostoni Carbone ML, Albermann K, Albers M, Arroyo J, Backes U, Barreiros T, Bertani I, Bjourson AJ, Bruckner M, Bruschi CV, Carignani G, Castagnoli L, Cerdan E, Clemente ML, Coblenz A, Coglievina M, Coissac E, Defoor E, Del Bino S, Delius H, Delneri D, de Wergifosse P, Dujon B, Kleine K, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome VII. Nature. 1997 May 29;387(6632 Suppl):81-4.
Pubmed: 9169869
Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F, Jouanno E, Jeunemaitre X, Benit P, Tzagoloff A, Rustin P, Bertherat J, Favier J, Gimenez-Roqueplo AP: SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet. 2010 Aug 1;19(15):3011-20. doi: 10.1093/hmg/ddq206. Epub 2010 May 18.
Pubmed: 20484225
Hirawake H, Wang H, Kuramochi T, Kojima S, Kita K: Human complex II (succinate-ubiquinone oxidoreductase): cDNA cloning of the flavoprotein (Fp) subunit of liver mitochondria. J Biochem. 1994 Jul;116(1):221-7. doi: 10.1093/oxfordjournals.jbchem.a124497.
Pubmed: 7798181
Morris AA, Farnsworth L, Ackrell BA, Turnbull DM, Birch-Machin MA: The cDNA sequence of the flavoprotein subunit of human heart succinate dehydrogenase. Biochim Biophys Acta. 1994 Mar 29;1185(1):125-8. doi: 10.1016/0005-2728(94)90203-8.
Pubmed: 8142412
Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, Skoldberg F, Husebye ES, Eng C, Maher ER: Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet. 2001 Jul;69(1):49-54. doi: 10.1086/321282. Epub 2001 Jun 12.
Pubmed: 11404820
Astuti D, Hart-Holden N, Latif F, Lalloo F, Black GC, Lim C, Moran A, Grossman AB, Hodgson SV, Freemont A, Ramsden R, Eng C, Evans DG, Maher ER: Genetic analysis of mitochondrial complex II subunits SDHD, SDHB and SDHC in paraganglioma and phaeochromocytoma susceptibility. Clin Endocrinol (Oxf). 2003 Dec;59(6):728-33. doi: 10.1046/j.1365-2265.2003.01914.x.
Pubmed: 14974914
Benn DE, Croxson MS, Tucker K, Bambach CP, Richardson AL, Delbridge L, Pullan PT, Hammond J, Marsh DJ, Robinson BG: Novel succinate dehydrogenase subunit B (SDHB) mutations in familial phaeochromocytomas and paragangliomas, but an absence of somatic SDHB mutations in sporadic phaeochromocytomas. Oncogene. 2003 Mar 6;22(9):1358-64. doi: 10.1038/sj.onc.1206300.
Pubmed: 12618761
Hirawake H, Taniwaki M, Tamura A, Kojima S, Kita K: Cytochrome b in human complex II (succinate-ubiquinone oxidoreductase): cDNA cloning of the components in liver mitochondria and chromosome assignment of the genes for the large (SDHC) and small (SDHD) subunits to 1q21 and 11q23. Cytogenet Cell Genet. 1997;79(1-2):132-8. doi: 10.1159/000134700.
Pubmed: 9533030
Elbehti-Green A, Au HC, Mascarello JT, Ream-Robinson D, Scheffler IE: Characterization of the human SDHC gene encoding of the integral membrane proteins of succinate-quinone oxidoreductase in mitochondria. Gene. 1998 Jun 15;213(1-2):133-40. doi: 10.1016/s0378-1119(98)00186-3.
Pubmed: 9714607
Niemann S, Muller U: Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet. 2000 Nov;26(3):268-70. doi: 10.1038/81551.
Pubmed: 11062460
Hirawake H, Taniwaki M, Tamura A, Amino H, Tomitsuka E, Kita K: Characterization of the human SDHD gene encoding the small subunit of cytochrome b (cybS) in mitochondrial succinate-ubiquinone oxidoreductase. Biochim Biophys Acta. 1999 Aug 4;1412(3):295-300. doi: 10.1016/s0005-2728(99)00071-7.
Pubmed: 10482792
Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN, Richard CW 3rd, Cornelisse CJ, Devilee P, Devlin B: Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000 Feb 4;287(5454):848-51. doi: 10.1126/science.287.5454.848.
Pubmed: 10657297
Haziot A, Chen S, Ferrero E, Low MG, Silber R, Goyert SM: The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol. 1988 Jul 15;141(2):547-52.
Pubmed: 3385210
Ferrero E, Goyert SM: Nucleotide sequence of the gene encoding the monocyte differentiation antigen, CD14. Nucleic Acids Res. 1988 May 11;16(9):4173. doi: 10.1093/nar/16.9.4173.
Pubmed: 2453848
Setoguchi M, Nasu N, Yoshida S, Higuchi Y, Akizuki S, Yamamoto S: Mouse and human CD14 (myeloid cell-specific leucine-rich glycoprotein) primary structure deduced from cDNA clones. Biochim Biophys Acta. 1989 Jul 7;1008(2):213-22. doi: 10.1016/0167-4781(80)90012-3.
Pubmed: 2472171
Smirnova I, Poltorak A, Chan EK, McBride C, Beutler B: Phylogenetic variation and polymorphism at the toll-like receptor 4 locus (TLR4). Genome Biol. 2000;1(1):RESEARCH002. doi: 10.1186/gb-2000-1-1-research002. Epub 2000 Apr 27.
Pubmed: 11104518
Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA: TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000 Jun;25(2):187-91. doi: 10.1038/76048.
Pubmed: 10835634
da Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ: Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J Biol Chem. 2001 Jun 15;276(24):21129-35. doi: 10.1074/jbc.M009164200. Epub 2001 Mar 26.
Pubmed: 11274165
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings