
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Isoprenaline B1-Adrenergic Cardiac Muscle Contraction Action Pathway
Homo sapiens
Drug Action Pathway
Created: 2020-08-12
Last Updated: 2023-10-25
Isoprenaline (also called isoproterenol) is a non-selective beta-adrenergic agonist. It is administered via IV or oral inhalation and is used to treat conditions including mild or transient episodes of heart block that do not require pacing, serious episodes of heart block and Adams-Stokes attacks (except when caused by ventricular tachycardia or fibrillation), cardiac arrest until electric shock or pacemaker therapy is available, bronchospasm occurring during anesthesia, and as an adjunct to in the treatment of hypovolemic and septic shock, low cardiac output states, congestive heart failure, and cardiogenic shock.
The actions of isoprenaline are mostly observed in heart muscle, where it binds to beta-1 adrenergic receptors, and smooth muscle (bronchi, blood vessel, GI tract and uterus), where it exerts it’s effects via beta-2 adrenergic receptors.
In the heart, isoprenaline binds to and activates the beta-1 adrenergic receptor, which is coupled to the G-protein signaling cascade. Activation of the receptor activates the signaling cascade which leads to activated protein kinase. Protein kinase activates calcium channels in the membrane, causing them to open and allow Ca2+ to enter the cell. Due to this effect, there is high concentration of Ca2+ in the cell. Ca2+ activates the ryanodine receptor on the sarcoplasmic reticulum, which transports Ca2+ from the sarcoplasmic reticulum into the cytosol. the high concentration of Ca2+ in the cytosol binds to troponin to cause muscle contraction. The high concentration of Ca2+ means that more Ca2+ binds to troponin, increasing inotropy.
In non-cardiac myocytes, an increase in intracellular Ca2+ increases the slop of phase 4 of the action potential. The threshold is reached faster, therefore, the heart rate is increased.
In the smooth muscle, Ca2+-calmodulin complex activates myosin-LC kinase which activates myosin-LC. The activated myosin-LC causes contraction.
Isoprenaline binds to and activates beta-2 adrenergic receptor, activating the G-protein signaling cascade. The G-protein signaling cascade produces cAMP, which inhibits myosin-LC kinase. This prevents the activation of myosin-LC and as a result, decreases smooth muscle contraction.
Possible side effects from taking isoprenaline include headache, dizziness, upset stomach, flushing, fatigue, nervousness, angina, hypotension, hypertension, palpitations, ventricular arrhythmia, tachycardia, adams-stokes syndrome, dyspnea, edema, blurred vision, nausea, vomiting, tremor, weakness.
References
Isoprenaline B1-Adrenergic Cardiac Muscle Contraction Pathway References
Szymanski MW, Singh DP. Isoproterenol. [Updated 2020 May 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526042/
Ritter, James (2020). The heart. Rang and Dale’s Pharmacology (9th ed). Retrieved from: https://www-clinicalkey-com.login.ezproxy.library.ualberta.ca/#!/browse/book/3-s2.0-C2016004202X
Wishart, D., Knox, C., Guo, A., Shrivastava, S., Hassanali, M., Stothard, P., . . . Woolsey, J. (2005, June). Isoprenaline. Retrieved August 14th, 2020, from https://www.drugbank.ca/drugs/DB01064
Sakuntabhai A, Burge S, Monk S, Hovnanian A: Spectrum of novel ATP2A2 mutations in patients with Darier's disease. Hum Mol Genet. 1999 Sep;8(9):1611-9. doi: 10.1093/hmg/8.9.1611.
Pubmed: 10441323
Ruiz-Perez VL, Carter SA, Healy E, Todd C, Rees JL, Steijlen PM, Carmichael AJ, Lewis HM, Hohl D, Itin P, Vahlquist A, Gobello T, Mazzanti C, Reggazini R, Nagy G, Munro CS, Strachan T: ATP2A2 mutations in Darier's disease: variant cutaneous phenotypes are associated with missense mutations, but neuropsychiatric features are independent of mutation class. Hum Mol Genet. 1999 Sep;8(9):1621-30. doi: 10.1093/hmg/8.9.1621.
Pubmed: 10441324
Lytton J, MacLennan DH: Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem. 1988 Oct 15;263(29):15024-31.
Pubmed: 2844796
Komuro I, Wenninger KE, Philipson KD, Izumo S: Molecular cloning and characterization of the human cardiac Na+/Ca2+ exchanger cDNA. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4769-73. doi: 10.1073/pnas.89.10.4769.
Pubmed: 1374913
Van Eylen F, Bollen A, Herchuelz A: NCX1 Na/Ca exchanger splice variants in pancreatic islet cells. J Endocrinol. 2001 Mar;168(3):517-26. doi: 10.1677/joe.0.1680517.
Pubmed: 11241183
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Bagattin A, Veronese C, Rampazzo A, Danieli GA: Gene symbol: RYR2. Disease: Effort-induced polymorphic ventricular arrhythmias. Hum Genet. 2004 Mar;114(4):404.
Pubmed: 15046072
Tunwell RE, Wickenden C, Bertrand BM, Shevchenko VI, Walsh MB, Allen PD, Lai FA: The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J. 1996 Sep 1;318 ( Pt 2):477-87. doi: 10.1042/bj3180477.
Pubmed: 8809036
Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F, Larderet G, Brahmbhatt B, Brown K, Bauce B, Muriago M, Basso C, Thiene G, Danieli GA, Rampazzo A: Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet. 2001 Feb 1;10(3):189-94. doi: 10.1093/hmg/10.3.189.
Pubmed: 11159936
Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WH, Qiang B, Chan P, Shen Y, Wu X: Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol. 2003 Aug;54(2):239-43. doi: 10.1002/ana.10607.
Pubmed: 12891677
Heron SE, Phillips HA, Mulley JC, Mazarib A, Neufeld MY, Berkovic SF, Scheffer IE: Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann Neurol. 2004 Apr;55(4):595-6. doi: 10.1002/ana.20028.
Pubmed: 15048902
Daniil G, Fernandes-Rosa FL, Chemin J, Blesneac I, Beltrand J, Polak M, Jeunemaitre X, Boulkroun S, Amar L, Strom TM, Lory P, Zennaro MC: CACNA1H Mutations Are Associated With Different Forms of Primary Aldosteronism. EBioMedicine. 2016 Nov;13:225-236. doi: 10.1016/j.ebiom.2016.10.002. Epub 2016 Oct 4.
Pubmed: 27729216
Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP: Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5' CpG island in human tumors. Cancer Res. 1999 Sep 15;59(18):4535-41.
Pubmed: 10493502
Morino H, Matsuda Y, Muguruma K, Miyamoto R, Ohsawa R, Ohtake T, Otobe R, Watanabe M, Maruyama H, Hashimoto K, Kawakami H: A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Mol Brain. 2015 Dec 29;8:89. doi: 10.1186/s13041-015-0180-4.
Pubmed: 26715324
Chemin J, Siquier-Pernet K, Nicouleau M, Barcia G, Ahmad A, Medina-Cano D, Hanein S, Altin N, Hubert L, Bole-Feysot C, Fourage C, Nitschke P, Thevenon J, Rio M, Blanc P, Vidal C, Bahi-Buisson N, Desguerre I, Munnich A, Lyonnet S, Boddaert N, Fassi E, Shinawi M, Zimmerman H, Amiel J, Faivre L, Colleaux L, Lory P, Cantagrel V: De novo mutation screening in childhood-onset cerebellar atrophy identifies gain-of-function mutations in the CACNA1G calcium channel gene. Brain. 2018 Jul 1;141(7):1998-2013. doi: 10.1093/brain/awy145.
Pubmed: 29878067
Soldatov NM: Molecular diversity of L-type Ca2+ channel transcripts in human fibroblasts. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4628-32. doi: 10.1073/pnas.89.10.4628.
Pubmed: 1316612
Schultz D, Mikala G, Yatani A, Engle DB, Iles DE, Segers B, Sinke RJ, Weghuis DO, Klockner U, Wakamori M, et al.: Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6228-32. doi: 10.1073/pnas.90.13.6228.
Pubmed: 8392192
Soldatov NM: Genomic structure of human L-type Ca2+ channel. Genomics. 1994 Jul 1;22(1):77-87. doi: 10.1006/geno.1994.1347.
Pubmed: 7959794
Klugbauer N, Lacinova L, Marais E, Hobom M, Hofmann F: Molecular diversity of the calcium channel alpha2delta subunit. J Neurosci. 1999 Jan 15;19(2):684-91.
Pubmed: 9880589
Gao B, Sekido Y, Maximov A, Saad M, Forgacs E, Latif F, Wei MH, Lerman M, Lee JH, Perez-Reyes E, Bezprozvanny I, Minna JD: Functional properties of a new voltage-dependent calcium channel alpha(2)delta auxiliary subunit gene (CACNA2D2). J Biol Chem. 2000 Apr 21;275(16):12237-42. doi: 10.1074/jbc.275.16.12237.
Pubmed: 10766861
Hobom M, Dai S, Marais E, Lacinova L, Hofmann F, Klugbauer N: Neuronal distribution and functional characterization of the calcium channel alpha2delta-2 subunit. Eur J Neurosci. 2000 Apr;12(4):1217-26. doi: 10.1046/j.1460-9568.2000.01009.x.
Pubmed: 10762351
Powers PA, Liu S, Hogan K, Gregg RG: Skeletal muscle and brain isoforms of a beta-subunit of human voltage-dependent calcium channels are encoded by a single gene. J Biol Chem. 1992 Nov 15;267(32):22967-72.
Pubmed: 1385409
Williams ME, Feldman DH, McCue AF, Brenner R, Velicelebi G, Ellis SB, Harpold MM: Structure and functional expression of alpha 1, alpha 2, and beta subunits of a novel human neuronal calcium channel subtype. Neuron. 1992 Jan;8(1):71-84. doi: 10.1016/0896-6273(92)90109-q.
Pubmed: 1309651
Collin T, Wang JJ, Nargeot J, Schwartz A: Molecular cloning of three isoforms of the L-type voltage-dependent calcium channel beta subunit from normal human heart. Circ Res. 1993 Jun;72(6):1337-44. doi: 10.1161/01.res.72.6.1337.
Pubmed: 7916667
Mische SM, Manjula BN, Fischetti VA: Relation of streptococcal M protein with human and rabbit tropomyosin: the complete amino acid sequence of human cardiac alpha tropomyosin, a highly conserved contractile protein. Biochem Biophys Res Commun. 1987 Feb 13;142(3):813-8. doi: 10.1016/0006-291x(87)91486-0.
Pubmed: 3548719
Lin CS, Leavitt J: Cloning and characterization of a cDNA encoding transformation-sensitive tropomyosin isoform 3 from tumorigenic human fibroblasts. Mol Cell Biol. 1988 Jan;8(1):160-8. doi: 10.1128/mcb.8.1.160.
Pubmed: 3336357
MacLeod AR, Gooding C: Human hTM alpha gene: expression in muscle and nonmuscle tissue. Mol Cell Biol. 1988 Jan;8(1):433-40. doi: 10.1128/mcb.8.1.433.
Pubmed: 3336363
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings