Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Dipyridamole Action Pathway
Homo sapiens
Drug Action Pathway
Created: 2020-08-31
Last Updated: 2023-10-25
Dipyridamole is an oral coronary vasodilator and antiplatelet drug used in combination with other anti-coagulant drugs to prevent thrombosis in patients with valvular and vascular disorders. Dipyridamole works through many mechanisms including inhibition of phosphodiesterase-5, inhibition of adenosine deaminase and adenosine transporter, decreased thromboxane synthesis and increased prostacyclin synthesis. Platelets have adenosine A2A and A2B receptors on their cell membrane. When these receptors are activated by adenosine, the Gs signaling cascade is triggered, adenylate cyclase is activated and cAMP is produced. Through a number of mechanisms, cAMP leads to an inhibition of platelet activation and aggregation. cAMP may prevent release of arachidonic acid from membrane phospholipids. Arachidonic acid produces prostaglandin H2 via prostaglandin G/H synthase 1 & 2. Thromboxane A2 is then formed from prostaglandin H2 via thromboxane A synthase. Thromboxane causes platelet activation and aggregation, therefore, inhibition of arachidonic release by cAMP leads to reduced thromboxane production and thus, less platelet activation and aggregation. Phosphodiesterase-5 can breakdown cAMP into AMP, preventing this inhibitory effect. Dipyridamole enters platelets through the multidrug resistance associated protein 4. It inhibits phosphodiesterase-5, preventing the breakdown of cAMP and causing a high intracellular concentration of cAMP. This causes increased inhibition of platelet activation and aggregation. Dipyridamole may also inhibit the adenosine transporter, preventing adenosine reuptake and causing an accumulation of adenosine in the extracellular space. This increases the amount adenosine surrounding the platelets, resulting in increased activation of the adenosine receptors. Dipyridamole also potentiates this effect by inhibiting adenosine deaminase, the enzyme responsible for breaking down adenosine. Dipyridamole may also directly stimulate prostacyclin I2 production endothelial cells. Prostacyclin I2 is transported out of the endothelial cells and activates prostacyclin receptors on the platelet. These prostacyclin receptors, when activated, activates adenylate cyclase and increases cytosolic cAMP which leads to further inhbition of platelet activation and agreggation. Dipyridamole may involve side effects such as gastrointestinal upset, headache, facial flushing, dizziness, hypotension, chest pain, nausea, diarrhea, rash and itchiness.
References
Dipyridamole Pathway References
Weitz J.I. (2018). Antiplatelet, anticoagulant, and fibrinolytic drugs. Jameson J, & Fauci A.S., & Kasper D.L., & Hauser S.L., & Longo D.L., & Loscalzo J(Eds.), Harrison's Principles of Internal Medicine, 20e. McGraw-Hill. https://accesspharmacy-mhmedical-com.login.ezproxy.library.ualberta.ca/content.aspx?bookid=2129§ionid=192018816
Wishart, D., Knox, C., Guo, A., Shrivastava, S., Hassanali, M., Stothard, P., . . . Woolsey, J. (2005, June). Dipyridamole. Retrieved August 31, 2020, from https://www.drugbank.ca/drugs/DB00975
Johnston-Cox, H. A., & Ravid, K. (2011). Adenosine and blood platelets. Purinergic signalling, 7(3), 357–365. https://doi.org/10.1007/s11302-011-9220-4
LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Dipyridamole. [Updated 2018 Jan 4]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548123/
Kerndt CC, Nagalli S. Dipyridamole. [Updated 2020 Jul 5]. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554455/
Ritter, James (2020). Haemostasis and thrombosis. Rang and Dale’s Pharmacology (9th ed). Retrieved from: https://www-clinicalkey-com.login.ezproxy.library.ualberta.ca/#!/browse/book/3-s2.0-C2016004202X
Le F, Townsend-Nicholson A, Baker E, Sutherland GR, Schofield PR: Characterization and chromosomal localization of the human A2a adenosine receptor gene: ADORA2A. Biochem Biophys Res Commun. 1996 Jun 14;223(2):461-7. doi: 10.1006/bbrc.1996.0916.
Pubmed: 8670304
Furlong TJ, Pierce KD, Selbie LA, Shine J: Molecular characterization of a human brain adenosine A2 receptor. Brain Res Mol Brain Res. 1992 Sep;15(1-2):62-6. doi: 10.1016/0169-328x(92)90152-2.
Pubmed: 1331670
Collins JE, Wright CL, Edwards CA, Davis MP, Grinham JA, Cole CG, Goward ME, Aguado B, Mallya M, Mokrab Y, Huckle EJ, Beare DM, Dunham I: A genome annotation-driven approach to cloning the human ORFeome. Genome Biol. 2004;5(10):R84. doi: 10.1186/gb-2004-5-10-r84. Epub 2004 Sep 30.
Pubmed: 15461802
Jacobson MA, Johnson RG, Luneau CJ, Salvatore CA: Cloning and chromosomal localization of the human A2b adenosine receptor gene (ADORA2B) and its pseudogene. Genomics. 1995 May 20;27(2):374-6. doi: 10.1006/geno.1995.1061.
Pubmed: 7558011
Pierce KD, Furlong TJ, Selbie LA, Shine J: Molecular cloning and expression of an adenosine A2b receptor from human brain. Biochem Biophys Res Commun. 1992 Aug 31;187(1):86-93. doi: 10.1016/s0006-291x(05)81462-7.
Pubmed: 1325798
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Jaiswal BS, Conti M: Identification and functional analysis of splice variants of the germ cell soluble adenylyl cyclase. J Biol Chem. 2001 Aug 24;276(34):31698-708. doi: 10.1074/jbc.M011698200. Epub 2001 Jun 21.
Pubmed: 11423534
Reed BY, Gitomer WL, Heller HJ, Hsu MC, Lemke M, Padalino P, Pak CY: Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J Clin Endocrinol Metab. 2002 Apr;87(4):1476-85. doi: 10.1210/jcem.87.4.8300.
Pubmed: 11932268
Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR: Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem. 2003 May 2;278(18):15922-6. doi: 10.1074/jbc.M212475200. Epub 2003 Feb 27.
Pubmed: 12609998
Griffiths M, Beaumont N, Yao SY, Sundaram M, Boumah CE, Davies A, Kwong FY, Coe I, Cass CE, Young JD, Baldwin SA: Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nat Med. 1997 Jan;3(1):89-93.
Pubmed: 8986748
Lum PY, Ngo LY, Bakken AH, Unadkat JD: Human intestinal es nucleoside transporter: molecular characterization and nucleoside inhibitory profiles. Cancer Chemother Pharmacol. 2000;45(4):273-8. doi: 10.1007/s002800050040.
Pubmed: 10755314
Sankar N, Machado J, Abdulla P, Hilliker AJ, Coe IR: Comparative genomic analysis of equilibrative nucleoside transporters suggests conserved protein structure despite limited sequence identity. Nucleic Acids Res. 2002 Oct 15;30(20):4339-50. doi: 10.1093/nar/gkf564.
Pubmed: 12384580
Janke D, Mehralivand S, Strand D, Godtel-Armbrust U, Habermeier A, Gradhand U, Fischer C, Toliat MR, Fritz P, Zanger UM, Schwab M, Fromm MF, Nurnberg P, Wojnowski L, Closs EI, Lang T: 6-mercaptopurine and 9-(2-phosphonyl-methoxyethyl) adenine (PMEA) transport altered by two missense mutations in the drug transporter gene ABCC4. Hum Mutat. 2008 May;29(5):659-69. doi: 10.1002/humu.20694.
Pubmed: 18300232
Lee K, Belinsky MG, Bell DW, Testa JR, Kruh GD: Isolation of MOAT-B, a widely expressed multidrug resistance-associated protein/canalicular multispecific organic anion transporter-related transporter. Cancer Res. 1998 Jul 1;58(13):2741-7.
Pubmed: 9661885
Adachi M, Sampath J, Lan LB, Sun D, Hargrove P, Flatley R, Tatum A, Edwards MZ, Wezeman M, Matherly L, Drake R, Schuetz J: Expression of MRP4 confers resistance to ganciclovir and compromises bystander cell killing. J Biol Chem. 2002 Oct 11;277(41):38998-9004. doi: 10.1074/jbc.M203262200. Epub 2002 Jun 24.
Pubmed: 12105214
Nemoz G, Zhang R, Sette C, Conti M: Identification of cyclic AMP-phosphodiesterase variants from the PDE4D gene expressed in human peripheral mononuclear cells. FEBS Lett. 1996 Apr 8;384(1):97-102. doi: 10.1016/0014-5793(96)00300-6.
Pubmed: 8797812
Bolger GB, McCahill A, Yarwood SJ, Steele MR, Warwicker J, Houslay MD: Delineation of RAID1, the RACK1 interaction domain located within the unique N-terminal region of the cAMP-specific phosphodiesterase, PDE4D5. BMC Biochem. 2002 Aug 23;3:24.
Pubmed: 12193273
Bolger GB, McCahill A, Huston E, Cheung YF, McSorley T, Baillie GS, Houslay MD: The unique amino-terminal region of the PDE4D5 cAMP phosphodiesterase isoform confers preferential interaction with beta-arrestins. J Biol Chem. 2003 Dec 5;278(49):49230-8. doi: 10.1074/jbc.M303772200. Epub 2003 Sep 18.
Pubmed: 14500724
Valerio D, Duyvesteyn MG, Dekker BM, Weeda G, Berkvens TM, van der Voorn L, van Ormondt H, van der Eb AJ: Adenosine deaminase: characterization and expression of a gene with a remarkable promoter. EMBO J. 1985 Feb;4(2):437-43.
Pubmed: 3839456
Rostampour F, Biglari M, Vaisi-Raygani A, Salimi S, Tavilani H: Adenosine deaminase activity in fertile and infertile men. Andrologia. 2012 May;44 Suppl 1:586-9. doi: 10.1111/j.1439-0272.2011.01231.x. Epub 2011 Sep 15.
Pubmed: 21919946
Daddona PE, Shewach DS, Kelley WN, Argos P, Markham AF, Orkin SH: Human adenosine deaminase. cDNA and complete primary amino acid sequence. J Biol Chem. 1984 Oct 10;259(19):12101-6.
Pubmed: 6090454
Yokoyama C, Tanabe T: Cloning of human gene encoding prostaglandin endoperoxide synthase and primary structure of the enzyme. Biochem Biophys Res Commun. 1989 Dec 15;165(2):888-94. doi: 10.1016/s0006-291x(89)80049-x.
Pubmed: 2512924
Funk CD, Funk LB, Kennedy ME, Pong AS, Fitzgerald GA: Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J. 1991 Jun;5(9):2304-12.
Pubmed: 1907252
Takahashi Y, Ueda N, Yoshimoto T, Yamamoto S, Yokoyama C, Miyata A, Tanabe T, Fuse I, Hattori A, Shibata A: Immunoaffinity purification and cDNA cloning of human platelet prostaglandin endoperoxide synthase (cyclooxygenase). Biochem Biophys Res Commun. 1992 Jan 31;182(2):433-8. doi: 10.1016/0006-291x(92)91750-k.
Pubmed: 1734857
Kosaka T, Miyata A, Ihara H, Hara S, Sugimoto T, Takeda O, Takahashi E, Tanabe T: Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur J Biochem. 1994 May 1;221(3):889-97. doi: 10.1111/j.1432-1033.1994.tb18804.x.
Pubmed: 8181472
Jones DA, Carlton DP, McIntyre TM, Zimmerman GA, Prescott SM: Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J Biol Chem. 1993 Apr 25;268(12):9049-54.
Pubmed: 8473346
Hla T, Neilson K: Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7384-8. doi: 10.1073/pnas.89.16.7384.
Pubmed: 1380156
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings