Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Cilazapril ACE inhibitor Action Pathway
Homo sapiens
Drug Action Pathway
Created: 2020-11-09
Last Updated: 2023-10-25
Cilazapril is an angiotensin-converting enzyme competitive inhibitor that binds to the same active site as angiotensin I. Cilazapril is a prodrug which is converted to its active form by the liver after being oral ingested, it then becomes its main metabolite Cilazaprilat. Cilazapril is used to treat hypertension and heart failure as it reduces the effects of angiotensin II which decreases resistance and blood pressure, as angiotensin II is a potent vasoconstrictor. Angiotensin II is produced by angiotensin-converting enzyme converting angiotensin I to angiotensin II. Angiotensin II acts on the kidneys, blood vessels, posterior pituitary gland and excitatory amino acid transporter via attaching to the Type-1 angiotensin II receptor. The kidney responds by increasing aldosterone secretion which is responsible for water and sodium uptake via the distal tubule and collecting duct. The posterior pituitary gland reacts by increasing vasopressin release, vasopressin acts on the collecting ducts to increase water reabsorption. Blood vessels react by vasoconstricting, and the excitatory amino acid transporter is inhibited and therefore does not take up L-glutamic acid into the astrocytes leaving them to interact with the NMDA receptors on the paraventricular nucleus neuron (PVN neuron) to elicit a thirst sensation, in order to encourage the body to drink more water. All of these effects together leads to increased blood pressure and resistance throughout the body which is detrimental to someone with hypertension or heart failure as it makes it more difficult for blood to circulate throughout the body. Cilazapril inhibits angiotensin II thus inhibiting its downstream effects as well, reducing aldosterone and vasopressin secretion, inhibiting vasoconstriction, and allowing the amino acid transporter to be activated. The amino acid transporter being activated means the astrocytes uptake L-glutamic acid, reducing its interaction with the PVN neuron and thus reduce thirst response. All of these in combination ultimately reduces blood pressure and resistance in the blood vessels, treating the patients for their increased blood pressure. Some adverse effects may include hypotension, hyperkalaemia, and hyponatraemia. This is due to the decreased blood pressure, decreased uptake of sodium and insufficient potassium excretion due to reduced aldosterone levels. Cilazapril is eliminated by the kidneys and excreted through urination.
References
Cilazapril ACE inhibitor Pathway References
Fasanella d'Amore T, Bussien JP, Nussberger J, Waeber B, Turini GA, Brunner HR, Kler L, Francis RJ: Effects of single doses of the converting enzyme inhibitor cilazapril in normal volunteers. J Cardiovasc Pharmacol. 1987 Jan;9(1):26-31.
Pubmed: 2434790
Nelkin D: Establishing professional standards: ecologists and the public interest. Hastings Cent Rep. 1976 Feb;6(1):38-44.
Pubmed: 56330
Natoff IL, Nixon JS, Francis RJ, Klevans LR, Brewster M, Budd J, Patel AT, Wenger J, Worth E: Biological properties of the angiotensin-converting enzyme inhibitor cilazapril. J Cardiovasc Pharmacol. 1985 May-Jun;7(3):569-80. doi: 10.1097/00005344-198505000-00025.
Pubmed: 2410692
Kageyama R, Ohkubo H, Nakanishi S: Primary structure of human preangiotensinogen deduced from the cloned cDNA sequence. Biochemistry. 1984 Jul 31;23(16):3603-9. doi: 10.1021/bi00311a006.
Pubmed: 6089875
Gaillard I, Clauser E, Corvol P: Structure of human angiotensinogen gene. DNA. 1989 Mar;8(2):87-99.
Pubmed: 2924688
Fukamizu A, Takahashi S, Seo MS, Tada M, Tanimoto K, Uehara S, Murakami K: Structure and expression of the human angiotensinogen gene. Identification of a unique and highly active promoter. J Biol Chem. 1990 May 5;265(13):7576-82.
Pubmed: 1692023
Imai T, Miyazaki H, Hirose S, Hori H, Hayashi T, Kageyama R, Ohkubo H, Nakanishi S, Murakami K: Cloning and sequence analysis of cDNA for human renin precursor. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7405-9. doi: 10.1073/pnas.80.24.7405.
Pubmed: 6324167
Morris BJ: New possibilities for intracellular renin and inactive renin now that the structure of the human renin gene has been elucidated. Clin Sci (Lond). 1986 Oct;71(4):345-55. doi: 10.1042/cs0710345.
Pubmed: 3530608
Hardman JA, Hort YJ, Catanzaro DF, Tellam JT, Baxter JD, Morris BJ, Shine J: Primary structure of the human renin gene. DNA. 1984 Dec;3(6):457-68.
Pubmed: 6391881
Ehlers MR, Riordan JF: Angiotensin-converting enzyme: zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. Biochemistry. 1991 Jul 23;30(29):7118-26. doi: 10.1021/bi00243a012.
Pubmed: 1649623
Woodman ZL, Oppong SY, Cook S, Hooper NM, Schwager SL, Brandt WF, Ehlers MR, Sturrock ED: Shedding of somatic angiotensin-converting enzyme (ACE) is inefficient compared with testis ACE despite cleavage at identical stalk sites. Biochem J. 2000 May 1;347 Pt 3:711-8.
Pubmed: 10769174
Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S: A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000 Sep 1;87(5):E1-9. doi: 10.1161/01.res.87.5.e1.
Pubmed: 10969042
Salvesen G, Farley D, Shuman J, Przybyla A, Reilly C, Travis J: Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases. Biochemistry. 1987 Apr 21;26(8):2289-93. doi: 10.1021/bi00382a032.
Pubmed: 3304423
Hohn PA, Popescu NC, Hanson RD, Salvesen G, Ley TJ: Genomic organization and chromosomal localization of the human cathepsin G gene. J Biol Chem. 1989 Aug 15;264(23):13412-9.
Pubmed: 2569462
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Mauzy CA, Hwang O, Egloff AM, Wu LH, Chung FZ: Cloning, expression, and characterization of a gene encoding the human angiotensin II type 1A receptor. Biochem Biophys Res Commun. 1992 Jul 15;186(1):277-84. doi: 10.1016/s0006-291x(05)80804-6.
Pubmed: 1378723
Furuta H, Guo DF, Inagami T: Molecular cloning and sequencing of the gene encoding human angiotensin II type 1 receptor. Biochem Biophys Res Commun. 1992 Feb 28;183(1):8-13. doi: 10.1016/0006-291x(92)91600-u.
Pubmed: 1543512
Bergsma DJ, Ellis C, Kumar C, Nuthulaganti P, Kersten H, Elshourbagy N, Griffin E, Stadel JM, Aiyar N: Cloning and characterization of a human angiotensin II type 1 receptor. Biochem Biophys Res Commun. 1992 Mar 31;183(3):989-95. doi: 10.1016/s0006-291x(05)80288-8.
Pubmed: 1567413
Veenstra-VanderWeele J, Kim SJ, Gonen D, Hanna GL, Leventhal BL, Cook EH Jr: Genomic organization of the SLC1A1/EAAC1 gene and mutation screening in early-onset obsessive-compulsive disorder. Mol Psychiatry. 2001 Mar;6(2):160-7. doi: 10.1038/sj.mp.4000806.
Pubmed: 11317217
Myles-Worsley M, Tiobech J, Browning SR, Korn J, Goodman S, Gentile K, Melhem N, Byerley W, Faraone SV, Middleton FA: Deletion at the SLC1A1 glutamate transporter gene co-segregates with schizophrenia and bipolar schizoaffective disorder in a 5-generation family. Am J Med Genet B Neuropsychiatr Genet. 2013 Mar;162B(2):87-95. doi: 10.1002/ajmg.b.32125. Epub 2013 Jan 22.
Pubmed: 23341099
Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Broer S, Rasko JE: Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest. 2011 Jan;121(1):446-53. doi: 10.1172/JCI44474. Epub 2010 Dec 1.
Pubmed: 21123949
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings