Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Metabolism and Physiological Effects of Para-cresol
Homo sapiens
Metabolic Pathway
Created: 2021-03-02
Last Updated: 2023-10-25
Para-cresol(P-cresol) is a phenolic compound that is formed through gut microbial metabolism from the amino acid tyrosine which is acquired from foods that are high in protein. After being transported into gut microbes, tyrosine undergoes reactions with the enzymes tyrosine transaminase, 4-hydroxyphenylpyruvate oxidase and 4-hydroxylphenylacetate decarboxylase to form para-cresol. Most of the p-cresol that is produced from the gut microbes then enters systemic circulation. P-cresol can then undergo sulfation or glucuronidation reactions in the liver to produce the uremic toxins p-cresyl sulfate and p-cresyl glucuronide respectively. However, P-cresol itself can also be a uremic toxin with widespread toxic effects on the body. P-cresol is shown to be associated with cardiovascular disease and it can also inhibit endothelial cell proliferation.
References
Metabolism and Physiological Effects of Para-cresol References
Meyer, T. W., & Hostetter, T. H. (2012). Uremic solutes from colon microbes. Kidney international, 81(10), 949-954.
Passmore, I. J., Letertre, M. P., Preston, M. D., Bianconi, I., Harrison, M. A., Nasher, F., ... & Dawson, L. F. (2018). Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS pathogens, 14(9), e1007191.
Selmer, T., & Andrei, P. I. (2001). p‐Hydroxyphenylacetate decarboxylase from Clostridium difficile: A novel glycyl radical enzyme catalysing the formation of p‐cresol. European Journal of Biochemistry, 268(5), 1363-1372.
Dawson, L. F., Donahue, E. H., Cartman, S. T., Barton, R. H., Bundy, J., McNerney, R., ... & Wren, B. W. (2011). The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains. BMC microbiology, 11(1), 1-10.
Steglich, M., Hofmann, J. D., Helmecke, J., Sikorski, J., Spröer, C., Riedel, T., ... & Nübel, U. (2018). Convergent loss of ABC transporter genes from Clostridioides difficile genomes is associated with impaired tyrosine uptake and p-cresol production. Frontiers in microbiology, 9, 901.
Blakley ER: The catabolism of L-tyrosine by an Arthrobacter sp. Can J Microbiol. 1977 Sep;23(9):1128-39. doi: 10.1139/m77-169.
Pubmed: 20216
Gryp T, Vanholder R, Vaneechoutte M, Glorieux G: p-Cresyl Sulfate. Toxins (Basel). 2017 Jan 29;9(2). pii: toxins9020052. doi: 10.3390/toxins9020052.
Pubmed: 28146081
Meijers, B. K. I., Bammens, B., De Moor, B., Verbeke, K., Vanrenterghem, Y., & Evenepoel, P. (2008). Free p-cresol is associated with cardiovascular disease in hemodialysis patients. Kidney international, 73(10), 1174-1180.
Rettenmeier R, Natt E, Zentgraf H, Scherer G: Isolation and characterization of the human tyrosine aminotransferase gene. Nucleic Acids Res. 1990 Jul 11;18(13):3853-61. doi: 10.1093/nar/18.13.3853.
Pubmed: 1973834
Zelenin SM, Mertvetsov NP: [Nucleotide sequence of the human tyrosine aminotransferase gene]. Bioorg Khim. 1994 Feb;20(2):196-204.
Pubmed: 7908801
Seralini GE, Luu-The V, Labrie F: Cloning and expression of human tyrosine aminotransferase cDNA. Biochim Biophys Acta. 1995 Jan 2;1260(1):97-101. doi: 10.1016/0167-4781(94)00191-5.
Pubmed: 7999802
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings