Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Metabolism and Physiological Effects of Indole Acetic Acid
Homo sapiens
Metabolic Pathway
Created: 2021-03-17
Last Updated: 2023-10-25
Indole acetic acid is an indole compound that is formed through gut microbial metabolism from dietary tryptophan through the indole-3-acetamide pathway . After being transported into gut microbes, tryptophan undergoes a reaction with the enzymes tryptophan monooxygenase and indole-3-acetamide hydrolase to form indole acetic acid. Indole acetic acid that is produced from the gut microbes then enters systemic circulation. This compound is shown to be a uremic toxin through high levels of retention. Indole acetic acid is shown to cause inflammation and disrupt the electron transport chain and oxidative phosphorylation causing muscle atrophy.
References
Metabolism and Physiological Effects of Indole Acetic Acid References
Gryp, T., De Paepe, K., Vanholder, R., Kerckhof, F. M., Van Biesen, W., Van de Wiele, T., ... & Glorieux, G. (2020). Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney international, 97(6), 1230-1242.
Zelante, T., Iannitti, R. G., Cunha, C., De Luca, A., Giovannini, G., Pieraccini, G., ... & Romani, L. (2013). Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 39(2), 372-385.
Tsavkelova, E., Oeser, B., Oren-Young, L., Israeli, M., Sasson, Y., Tudzynski, B., & Sharon, A. (2012). Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genetics and Biology, 49(1), 48-57.
Asai, H., Hirata, J., & Watanabe-Akanuma, M. (2018). Indoxyl glucuronide, a protein-bound uremic toxin, inhibits hypoxia-inducible factor‒dependent erythropoietin expression through activation of aryl hydrocarbon receptor. Biochemical and biophysical research communications, 504(2), 538-544.
Graboski, A. L., & Redinbo, M. R. (2020). Gut-derived protein-bound uremic toxins. Toxins, 12(9), 590.
Lim, Y. J., Sidor, N. A., Tonial, N. C., Che, A., & Urquhart, B. L. (2021). Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins, 13(2), 142.
Veenstra-VanderWeele J, Kim SJ, Gonen D, Hanna GL, Leventhal BL, Cook EH Jr: Genomic organization of the SLC1A1/EAAC1 gene and mutation screening in early-onset obsessive-compulsive disorder. Mol Psychiatry. 2001 Mar;6(2):160-7. doi: 10.1038/sj.mp.4000806.
Pubmed: 11317217
Myles-Worsley M, Tiobech J, Browning SR, Korn J, Goodman S, Gentile K, Melhem N, Byerley W, Faraone SV, Middleton FA: Deletion at the SLC1A1 glutamate transporter gene co-segregates with schizophrenia and bipolar schizoaffective disorder in a 5-generation family. Am J Med Genet B Neuropsychiatr Genet. 2013 Mar;162B(2):87-95. doi: 10.1002/ajmg.b.32125. Epub 2013 Jan 22.
Pubmed: 23341099
Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Broer S, Rasko JE: Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest. 2011 Jan;121(1):446-53. doi: 10.1172/JCI44474. Epub 2010 Dec 1.
Pubmed: 21123949
Torrents D, Estevez R, Pineda M, Fernandez E, Lloberas J, Shi YB, Zorzano A, Palacin M: Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J Biol Chem. 1998 Dec 4;273(49):32437-45. doi: 10.1074/jbc.273.49.32437.
Pubmed: 9829974
Nagase T, Seki N, Ishikawa K, Ohira M, Kawarabayasi Y, Ohara O, Tanaka A, Kotani H, Miyajima N, Nomura N: Prediction of the coding sequences of unidentified human genes. VI. The coding sequences of 80 new genes (KIAA0201-KIAA0280) deduced by analysis of cDNA clones from cell line KG-1 and brain. DNA Res. 1996 Oct 31;3(5):321-9, 341-54. doi: 10.1093/dnares/3.5.321.
Pubmed: 9039502
Bechtel S, Rosenfelder H, Duda A, Schmidt CP, Ernst U, Wellenreuther R, Mehrle A, Schuster C, Bahr A, Blocker H, Heubner D, Hoerlein A, Michel G, Wedler H, Kohrer K, Ottenwalder B, Poustka A, Wiemann S, Schupp I: The full-ORF clone resource of the German cDNA Consortium. BMC Genomics. 2007 Oct 31;8:399. doi: 10.1186/1471-2164-8-399.
Pubmed: 17974005
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings