Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Metabolism and Physiological Effects of Phenylacetic Acid
Homo sapiens
Metabolic Pathway
Created: 2021-03-24
Last Updated: 2023-10-25
Phenylacetic acid is carboxylic acid ester that has also been found to be a uremic toxin that is synthesized from L-phenylalanine. L-Phenylalanine is consumed through high protein foods such as eggs, chicken, liver, beef, milk, and soybeans. In the intestine L-phenylalanine is converted into 2-phenylethylamine by the enzyme Aromatic-L-amino-acid decarboxylase. 2-Phenylethylamine then is transported into the periplasm of intestinal bacteria such as E. Coli strain K12 through an unknown transporter. In the periplasm of the E. coli, 2-phenylethylamine is catalyzed by the enzyme primary amine oxidase to synthesize phenylacetaldehyde. Phenylacetaldehyde is transported into the cytosol of the E. coli bacteria where it is catalyzed by the enzyme phenylacetaldehyde dehydrogenase to synthesize phenylacetic acid. Phenylacetic acid is transported out of the bacteria, back into the intestine by an unknown transporter. Phenylacetic acid is then transported into the blood where it has various effects on the human body. It reduces nitric oxide production and reduces protection against inflammation in vessel walls. It also leads to the production of reactive oxygen species. It also contribute to inflammation by priming polymorphonuclear leucocytes.
References
Metabolism and Physiological Effects of Phenylacetic Acid References
Harper, A. E. (1984). Phenylalanine metabolism. Aspartame Physiology and Biochemistry (Stegink LD, Filer LJ Jr, eds). New York: Dekker, 77-109.
Parrott, S., Jones, S., & Cooper, R. A. (1987). 2-Phenylethylamine catabolism by Escherichia coli K12. Microbiology, 133(2), 347-351.
Parthasarathy, A., Kahnt, J., Chowdhury, N. P., & Buckel, W. (2013). Phenylalanine catabolism in Archaeoglobus fulgidus VC-16. Archives of microbiology, 195(12), 781-797.
Aklujkar, M., Risso, C., Smith, J., Beaulieu, D., Dubay, R., Giloteaux, L., ... & Holmes, D. (2014). Anaerobic degradation of aromatic amino acids by the hyperthermophilic archaeon Ferroglobus placidus. Microbiology, 160(12), 2694-2709.
Windey, K., De Preter, V., & Verbeke, K. (2012). Relevance of protein fermentation to gut health. Molecular nutrition & food research, 56(1), 184-196.
Wang, Z., & Zhao, Y. (2018). Gut microbiota derived metabolites in cardiovascular health and disease. Protein & cell, 9(5), 416-431.
Oberdoerster, J., Guizzetti, M., & Costa, L. G. (2000). Effect of phenylalanine and its metabolites on the proliferation and viability of neuronal and astroglial cells: possible relevance in maternal phenylketonuria. Journal of Pharmacology and Experimental Therapeutics, 295(1), 295-301.
Jankowski, J., Van Der Giet, M., Jankowski, V., Schmidt, S., Hemeier, M., Mahn, B., ... & Tepel, M. (2003). Increased plasma phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression. The Journal of clinical investigation, 112(2), 256-264.
Schmidt, S., Westhoff, T. H., Krauser, P., Zidek, W., & van der Giet, M. (2008). The uraemic toxin phenylacetic acid increases the formation of reactive oxygen species in vascular smooth muscle cells. Nephrology Dialysis Transplantation, 23(1), 65-71.
Cohen, G., Raupachova, J., & Hörl, W. H. (2013). The uraemic toxin phenylacetic acid contributes to inflammation by priming polymorphonuclear leucocytes. Nephrology Dialysis Transplantation, 28(2), 421-429.
Ferrandez A, Prieto MA, Garcia JL, Diaz E: Molecular characterization of PadA, a phenylacetaldehyde dehydrogenase from Escherichia coli. FEBS Lett. 1997 Apr 7;406(1-2):23-7. doi: 10.1016/s0014-5793(97)00228-7.
Pubmed: 9109378
Tanaka H, Sirich TL, Plummer NS, Weaver DS, Meyer TW: An Enlarged Profile of Uremic Solutes. PLoS One. 2015 Aug 28;10(8):e0135657. doi: 10.1371/journal.pone.0135657. eCollection 2015.
Pubmed: 26317986
Hanlon SP, Hill TK, Flavell MA, Stringfellow JM, Cooper RA: 2-phenylethylamine catabolism by Escherichia coli K-12: gene organization and expression. Microbiology (Reading). 1997 Feb;143 ( Pt 2):513-518. doi: 10.1099/00221287-143-2-513.
Pubmed: 9043126
Graboski AL, Redinbo MR: Gut-Derived Protein-Bound Uremic Toxins. Toxins (Basel). 2020 Sep 11;12(9). pii: toxins12090590. doi: 10.3390/toxins12090590.
Pubmed: 32932981
Ichinose H, Kurosawa Y, Titani K, Fujita K, Nagatsu T: Isolation and characterization of a cDNA clone encoding human aromatic L-amino acid decarboxylase. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1024-30. doi: 10.1016/0006-291x(89)91772-5.
Pubmed: 2590185
Scherer LJ, McPherson JD, Wasmuth JJ, Marsh JL: Human dopa decarboxylase: localization to human chromosome 7p11 and characterization of hepatic cDNAs. Genomics. 1992 Jun;13(2):469-71.
Pubmed: 1612608
Sumi-Ichinose C, Ichinose H, Takahashi E, Hori T, Nagatsu T: Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis. Biochemistry. 1992 Mar 3;31(8):2229-38. doi: 10.1021/bi00123a004.
Pubmed: 1540578
Parsons MR, Convery MA, Wilmot CM, Yadav KD, Blakeley V, Corner AS, Phillips SE, McPherson MJ, Knowles PF: Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution. Structure. 1995 Nov 15;3(11):1171-84.
Pubmed: 8591028
Steinebach V, Benen JA, Bader R, Postma PW, De Vries S, Duine JA: Cloning of the maoA gene that encodes aromatic amine oxidase of Escherichia coli W3350 and characterization of the overexpressed enzyme. Eur J Biochem. 1996 May 1;237(3):584-91. doi: 10.1111/j.1432-1033.1996.0584p.x.
Pubmed: 8647101
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Hanlon SP, Hill TK, Flavell MA, Stringfellow JM, Cooper RA: 2-phenylethylamine catabolism by Escherichia coli K-12: gene organization and expression. Microbiology. 1997 Feb;143 ( Pt 2):513-8. doi: 10.1099/00221287-143-2-513.
Pubmed: 9043126
Veenstra-VanderWeele J, Kim SJ, Gonen D, Hanna GL, Leventhal BL, Cook EH Jr: Genomic organization of the SLC1A1/EAAC1 gene and mutation screening in early-onset obsessive-compulsive disorder. Mol Psychiatry. 2001 Mar;6(2):160-7. doi: 10.1038/sj.mp.4000806.
Pubmed: 11317217
Myles-Worsley M, Tiobech J, Browning SR, Korn J, Goodman S, Gentile K, Melhem N, Byerley W, Faraone SV, Middleton FA: Deletion at the SLC1A1 glutamate transporter gene co-segregates with schizophrenia and bipolar schizoaffective disorder in a 5-generation family. Am J Med Genet B Neuropsychiatr Genet. 2013 Mar;162B(2):87-95. doi: 10.1002/ajmg.b.32125. Epub 2013 Jan 22.
Pubmed: 23341099
Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Broer S, Rasko JE: Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest. 2011 Jan;121(1):446-53. doi: 10.1172/JCI44474. Epub 2010 Dec 1.
Pubmed: 21123949
Torrents D, Mykkanen J, Pineda M, Feliubadalo L, Estevez R, de Cid R, Sanjurjo P, Zorzano A, Nunes V, Huoponen K, Reinikainen A, Simell O, Savontaus ML, Aula P, Palacin M: Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene. Nat Genet. 1999 Mar;21(3):293-6. doi: 10.1038/6809.
Pubmed: 10080182
Sperandeo MP, Annunziata P, Ammendola V, Fiorito V, Pepe A, Soldovieri MV, Taglialatela M, Andria G, Sebastio G: Lysinuric protein intolerance: identification and functional analysis of mutations of the SLC7A7 gene. Hum Mutat. 2005 Apr;25(4):410. doi: 10.1002/humu.9323.
Pubmed: 15776427
Sperandeo MP, Andria G, Sebastio G: Lysinuric protein intolerance: update and extended mutation analysis of the SLC7A7 gene. Hum Mutat. 2008 Jan;29(1):14-21. doi: 10.1002/humu.20589.
Pubmed: 17764084
Quackenbush E, Clabby M, Gottesdiener KM, Barbosa J, Jones NH, Strominger JL, Speck S, Leiden JM: Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6526-30. doi: 10.1073/pnas.84.18.6526.
Pubmed: 3476959
Teixeira S, Di Grandi S, Kuhn LC: Primary structure of the human 4F2 antigen heavy chain predicts a transmembrane protein with a cytoplasmic NH2 terminus. J Biol Chem. 1987 Jul 15;262(20):9574-80.
Pubmed: 3036867
Lumadue JA, Glick AB, Ruddle FH: Cloning, sequence analysis, and expression of the large subunit of the human lymphocyte activation antigen 4F2. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9204-8. doi: 10.1073/pnas.84.24.9204.
Pubmed: 3480538
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings