Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Tranexamic Acid Action Pathway (New)
Homo sapiens
Drug Action Pathway
Created: 2021-05-10
Last Updated: 2023-10-25
Tranexamic acid is a synthetic derivative of lysine used as an antifibrinolytic in the treatment and prevention of major bleeding. It targets plasminogen in blood vessels where these clots occur. The clotting process consists of two pathways, intrinsic and extrinsic, which converge to create stable fibrin which traps platelets and forms a hemostatic plug. The intrinsic pathway is activated by trauma inside the vasculature system, when there is exposed endothelial collagen. Endothelial collagen only becomes exposed when there is damage. The pathway starts with plasma kallikrein activating factor XII. The activated factor XIIa activates factor XI. Factor IX is then activated by factor XIa. Thrombin activates factor VIII and a Calicum-phospholipid-XIIa-VIIIa complex forms. This complex then activates factor X, the merging point of the two pathways. The extrinsic pathway is activated when external trauma causes blood to escape the vasculature system. Activation occurs through tissue factor released by endothelial cells after external damage. The tissue factor is a cellular receptor for factor VII. In the presence of calcium, the active site transitions and a TF-VIIa complex is formed. This complex aids in activation of factors IX and X. Factor V is activated by thrombin in the presence of calcium, then the activated factor Xa, in the presence of phospholipid, calcium and factor Va can convert prothrombin to thrombin. The extrinsic pathway occurs first, producing a small amount of thrombin, which then acts as a positive feedback on several components to increase the thrombin production. Thrombin converts fibrinogen to a loose, unstable fibrin and also activates factor XIII. Factors XIIIa strengthens the fibrin-fibrin and forms a stable, mesh fibrin which is essential for clot formation. The blood clot can be broken down by the enzyme plasmin. Plasmin is formed from plasminogen by tissue plasminogen activator. Tranexamic acid competitively and reversibly inhibits the activation of plasminogen via binding at several distinct sites, including four or five low-affinity sites and one high-affinity site. Plasmin is unable to be formed form plasminogen, and therefore, dissolution of the fibrin clot is prevented. Adverse effects such as seizures, headaches, backache, abdominal pain, nausea, vomiting, diarrhea, fatigue, pulmonary embolism, deep vein thrombosis, anaphylaxis, impaired color vision, and other visual disturbances can occur from the use of Tranexamic acid.
References
Tranexamic Acid Pathway (New) References
Ritter, James (2020). Rang and Dale’s Pharmacology (9th ed). Retrieved from: https://www-clinicalkey-com.login.ezproxy.library.ualberta.ca/#!/browse/book/3-s2.0-C2016004202X
Wishart, D., Knox, C., Guo, A., Shrivastava, S., Hassanali, M., Stothard, P., . . . Woolsey, J. (2005, June). Tranexamic acid. Retrieved May 10, 2021, from https://go.drugbank.com/drugs/DB00302
Weber State University. (n.d.). Mechanisms of Blood Coagulation. Retrieved July 19, 2020, from http://departments.weber.edu/chpweb/hemophilia/mechanisms_of_blood_coagulation.htm
Chaudhry R, Usama SM, Babiker HM. Physiology, Coagulation Pathways. [Updated 2020 Apr 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482253/
Chauncey JM, Wieters JS: Tranexamic Acid
Pubmed: 30422504
Chung DW, Chan WY, Davie EW: Characterization of a complementary deoxyribonucleic acid coding for the gamma chain of human fibrinogen. Biochemistry. 1983 Jun 21;22(13):3250-6. doi: 10.1021/bi00282a033.
Pubmed: 6688357
Rixon MW, Chung DW, Davie EW: Nucleotide sequence of the gene for the gamma chain of human fibrinogen. Biochemistry. 1985 Apr 9;24(8):2077-86. doi: 10.1021/bi00329a041.
Pubmed: 2990550
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Petersen TE, Martzen MR, Ichinose A, Davie EW: Characterization of the gene for human plasminogen, a key proenzyme in the fibrinolytic system. J Biol Chem. 1990 Apr 15;265(11):6104-11.
Pubmed: 2318848
Forsgren M, Raden B, Israelsson M, Larsson K, Heden LO: Molecular cloning and characterization of a full-length cDNA clone for human plasminogen. FEBS Lett. 1987 Mar 23;213(2):254-60. doi: 10.1016/0014-5793(87)81501-6.
Pubmed: 3030813
Mungall AJ, Palmer SA, Sims SK, Edwards CA, Ashurst JL, Wilming L, Jones MC, Horton R, Hunt SE, Scott CE, Gilbert JG, Clamp ME, Bethel G, Milne S, Ainscough R, Almeida JP, Ambrose KD, Andrews TD, Ashwell RI, Babbage AK, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beare DM, Beasley H, Beasley O, Bird CP, Blakey S, Bray-Allen S, Brook J, Brown AJ, Brown JY, Burford DC, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Clark SY, Clark G, Clee CM, Clegg S, Cobley V, Collier RE, Collins JE, Colman LK, Corby NR, Coville GJ, Culley KM, Dhami P, Davies J, Dunn M, Earthrowl ME, Ellington AE, Evans KA, Faulkner L, Francis MD, Frankish A, Frankland J, French L, Garner P, Garnett J, Ghori MJ, Gilby LM, Gillson CJ, Glithero RJ, Grafham DV, Grant M, Gribble S, Griffiths C, Griffiths M, Hall R, Halls KS, Hammond S, Harley JL, Hart EA, Heath PD, Heathcott R, Holmes SJ, Howden PJ, Howe KL, Howell GR, Huckle E, Humphray SJ, Humphries MD, Hunt AR, Johnson CM, Joy AA, Kay M, Keenan SJ, Kimberley AM, King A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd CR, Lloyd DM, Loveland JE, Lovell J, Martin S, Mashreghi-Mohammadi M, Maslen GL, Matthews L, McCann OT, McLaren SJ, McLay K, McMurray A, Moore MJ, Mullikin JC, Niblett D, Nickerson T, Novik KL, Oliver K, Overton-Larty EK, Parker A, Patel R, Pearce AV, Peck AI, Phillimore B, Phillips S, Plumb RW, Porter KM, Ramsey Y, Ranby SA, Rice CM, Ross MT, Searle SM, Sehra HK, Sheridan E, Skuce CD, Smith S, Smith M, Spraggon L, Squares SL, Steward CA, Sycamore N, Tamlyn-Hall G, Tester J, Theaker AJ, Thomas DW, Thorpe A, Tracey A, Tromans A, Tubby B, Wall M, Wallis JM, West AP, White SS, Whitehead SL, Whittaker H, Wild A, Willey DJ, Wilmer TE, Wood JM, Wray PW, Wyatt JC, Young L, Younger RM, Bentley DR, Coulson A, Durbin R, Hubbard T, Sulston JE, Dunham I, Rogers J, Beck S: The DNA sequence and analysis of human chromosome 6. Nature. 2003 Oct 23;425(6960):805-11. doi: 10.1038/nature02055.
Pubmed: 14574404
Kurachi K, Davie EW: Isolation and characterization of a cDNA coding for human factor IX. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6461-4. doi: 10.1073/pnas.79.21.6461.
Pubmed: 6959130
Jaye M, de la Salle H, Schamber F, Balland A, Kohli V, Findeli A, Tolstoshev P, Lecocq JP: Isolation of a human anti-haemophilic factor IX cDNA clone using a unique 52-base synthetic oligonucleotide probe deduced from the amino acid sequence of bovine factor IX. Nucleic Acids Res. 1983 Apr 25;11(8):2325-35. doi: 10.1093/nar/11.8.2325.
Pubmed: 6687940
Anson DS, Choo KH, Rees DJ, Giannelli F, Gould K, Huddleston JA, Brownlee GG: The gene structure of human anti-haemophilic factor IX. EMBO J. 1984 May;3(5):1053-60.
Pubmed: 6329734
Truett MA, Blacher R, Burke RL, Caput D, Chu C, Dina D, Hartog K, Kuo CH, Masiarz FR, Merryweather JP, et al.: Characterization of the polypeptide composition of human factor VIII:C and the nucleotide sequence and expression of the human kidney cDNA. DNA. 1985 Oct;4(5):333-49. doi: 10.1089/dna.1985.4.333.
Pubmed: 3935400
Wood WI, Capon DJ, Simonsen CC, Eaton DL, Gitschier J, Keyt B, Seeburg PH, Smith DH, Hollingshead P, Wion KL, Delwart E, Tuddenham EG, Vehar GA, Lawn RM: Expression of active human factor VIII from recombinant DNA clones. Nature. 1984 Nov 22-28;312(5992):330-7. doi: 10.1038/312330a0.
Pubmed: 6438526
Levinson B, Kenwrick S, Gamel P, Fisher K, Gitschier J: Evidence for a third transcript from the human factor VIII gene. Genomics. 1992 Nov;14(3):585-9.
Pubmed: 1427887
Jenny RJ, Pittman DD, Toole JJ, Kriz RW, Aldape RA, Hewick RM, Kaufman RJ, Mann KG: Complete cDNA and derived amino acid sequence of human factor V. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4846-50. doi: 10.1073/pnas.84.14.4846.
Pubmed: 3110773
Cripe LD, Moore KD, Kane WH: Structure of the gene for human coagulation factor V. Biochemistry. 1992 Apr 21;31(15):3777-85. doi: 10.1021/bi00130a007.
Pubmed: 1567832
Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E: The DNA sequence and biological annotation of human chromosome 1. Nature. 2006 May 18;441(7091):315-21. doi: 10.1038/nature04727.
Pubmed: 16710414
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings