Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Metabolism and Phsyiological Effects of Asymmetric dimethylarginine (ADMA)
Homo sapiens
Metabolic Pathway
Created: 2021-09-16
Last Updated: 2023-10-25
Asymmetrical dimethylarginine (ADMA) is produced from L-arginine. L-arginine is obtained from protein-rich foods like red meat, poultry, dairy and eggs. It is absorbed in the intestine to the blood. It enters cells in the body and is metabolized to ADMA via the enzyme protein arginine methyltransferase-1. ADMA inhibits nitric oxide synthase, preventing the formation of nitric oxide. This elevates blood pressure, causes vasoconstriction, impairs endothelium-dependent relaxation, and increases endothelial cell adhesiveness.
References
Metabolism and Phsyiological Effects of Asymmetric dimethylarginine (ADMA) References
Vallance P, Leiper J: Cardiovascular biology of the asymmetric dimethylarginine:dimethylarginine dimethylaminohydrolase pathway. Arterioscler Thromb Vasc Biol. 2004 Jun;24(6):1023-30. doi: 10.1161/01.ATV.0000128897.54893.26. Epub 2004 Apr 22.
Pubmed: 15105281
Sibal L, Agarwal SC, Home PD, Boger RH: The Role of Asymmetric Dimethylarginine (ADMA) in Endothelial Dysfunction and Cardiovascular Disease. Curr Cardiol Rev. 2010 May;6(2):82-90. doi: 10.2174/157340310791162659.
Pubmed: 21532773
Teerlink T, Luo Z, Palm F, Wilcox CS: Cellular ADMA: regulation and action. Pharmacol Res. 2009 Dec;60(6):448-60. doi: 10.1016/j.phrs.2009.08.002. Epub 2009 Aug 12.
Pubmed: 19682580
Bode-Böger, S. M., Scalera, F., Kielstein, J. T., Martens-Lobenhoffer, J., Breithardt, G., Fobker, M., & Reinecke, H. (2006). Symmetrical dimethylarginine: A new COMBINED parameter for renal function and extent of coronary artery disease. Journal of the American Society of Nephrology, 17(4), 1128–1134. https://doi.org/10.1681/asn.2005101119
Torrents D, Mykkanen J, Pineda M, Feliubadalo L, Estevez R, de Cid R, Sanjurjo P, Zorzano A, Nunes V, Huoponen K, Reinikainen A, Simell O, Savontaus ML, Aula P, Palacin M: Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene. Nat Genet. 1999 Mar;21(3):293-6. doi: 10.1038/6809.
Pubmed: 10080182
Sperandeo MP, Annunziata P, Ammendola V, Fiorito V, Pepe A, Soldovieri MV, Taglialatela M, Andria G, Sebastio G: Lysinuric protein intolerance: identification and functional analysis of mutations of the SLC7A7 gene. Hum Mutat. 2005 Apr;25(4):410. doi: 10.1002/humu.9323.
Pubmed: 15776427
Sperandeo MP, Andria G, Sebastio G: Lysinuric protein intolerance: update and extended mutation analysis of the SLC7A7 gene. Hum Mutat. 2008 Jan;29(1):14-21. doi: 10.1002/humu.20589.
Pubmed: 17764084
Quackenbush E, Clabby M, Gottesdiener KM, Barbosa J, Jones NH, Strominger JL, Speck S, Leiden JM: Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6526-30. doi: 10.1073/pnas.84.18.6526.
Pubmed: 3476959
Teixeira S, Di Grandi S, Kuhn LC: Primary structure of the human 4F2 antigen heavy chain predicts a transmembrane protein with a cytoplasmic NH2 terminus. J Biol Chem. 1987 Jul 15;262(20):9574-80.
Pubmed: 3036867
Lumadue JA, Glick AB, Ruddle FH: Cloning, sequence analysis, and expression of the large subunit of the human lymphocyte activation antigen 4F2. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9204-8. doi: 10.1073/pnas.84.24.9204.
Pubmed: 3480538
Hoshide R, Ikeda Y, Karashima S, Matsuura T, Komaki S, Kishino T, Niikawa N, Endo F, Matsuda I: Molecular cloning, tissue distribution, and chromosomal localization of human cationic amino acid transporter 2 (HCAT2). Genomics. 1996 Dec 1;38(2):174-8. doi: 10.1006/geno.1996.0613.
Pubmed: 8954799
Closs EI, Graf P, Habermeier A, Cunningham JM, Forstermann U: Human cationic amino acid transporters hCAT-1, hCAT-2A, and hCAT-2B: three related carriers with distinct transport properties. Biochemistry. 1997 May 27;36(21):6462-8. doi: 10.1021/bi962829p.
Pubmed: 9174363
Nusbaum C, Mikkelsen TS, Zody MC, Asakawa S, Taudien S, Garber M, Kodira CD, Schueler MG, Shimizu A, Whittaker CA, Chang JL, Cuomo CA, Dewar K, FitzGerald MG, Yang X, Allen NR, Anderson S, Asakawa T, Blechschmidt K, Bloom T, Borowsky ML, Butler J, Cook A, Corum B, DeArellano K, DeCaprio D, Dooley KT, Dorris L 3rd, Engels R, Glockner G, Hafez N, Hagopian DS, Hall JL, Ishikawa SK, Jaffe DB, Kamat A, Kudoh J, Lehmann R, Lokitsang T, Macdonald P, Major JE, Matthews CD, Mauceli E, Menzel U, Mihalev AH, Minoshima S, Murayama Y, Naylor JW, Nicol R, Nguyen C, O'Leary SB, O'Neill K, Parker SC, Polley A, Raymond CK, Reichwald K, Rodriguez J, Sasaki T, Schilhabel M, Siddiqui R, Smith CL, Sneddon TP, Talamas JA, Tenzin P, Topham K, Venkataraman V, Wen G, Yamazaki S, Young SK, Zeng Q, Zimmer AR, Rosenthal A, Birren BW, Platzer M, Shimizu N, Lander ES: DNA sequence and analysis of human chromosome 8. Nature. 2006 Jan 19;439(7074):331-5. doi: 10.1038/nature04406.
Pubmed: 16421571
Janssens SP, Shimouchi A, Quertermous T, Bloch DB, Bloch KD: Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem. 1992 Jul 25;267(21):14519-22.
Pubmed: 1378832
Marsden PA, Schappert KT, Chen HS, Flowers M, Sundell CL, Wilcox JN, Lamas S, Michel T: Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett. 1992 Aug 3;307(3):287-93. doi: 10.1016/0014-5793(92)80697-f.
Pubmed: 1379542
Marsden PA, Heng HH, Scherer SW, Stewart RJ, Hall AV, Shi XM, Tsui LC, Schappert KT: Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem. 1993 Aug 15;268(23):17478-88.
Pubmed: 7688726
Strahl BD, Briggs SD, Brame CJ, Caldwell JA, Koh SS, Ma H, Cook RG, Shabanowitz J, Hunt DF, Stallcup MR, Allis CD: Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol. 2001 Jun 26;11(12):996-1000. doi: 10.1016/s0960-9822(01)00294-9.
Pubmed: 11448779
Passos DO, Bressan GC, Nery FC, Kobarg J: Ki-1/57 interacts with PRMT1 and is a substrate for arginine methylation. FEBS J. 2006 Sep;273(17):3946-61. doi: 10.1111/j.1742-4658.2006.05399.x. Epub 2006 Jul 19.
Pubmed: 16879614
Miyata S, Mori Y, Tohyama M: PRMT1 and Btg2 regulates neurite outgrowth of Neuro2a cells. Neurosci Lett. 2008 Nov 14;445(2):162-5. doi: 10.1016/j.neulet.2008.08.065. Epub 2008 Aug 28.
Pubmed: 18773938
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings