Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Metabolism and Physiological Effects of Uric acid
Homo sapiens
Metabolic Pathway
Created: 2021-10-12
Last Updated: 2023-10-25
Uric acid is formed from purine catabolism. Purines can be made endogenously in the body or can be obtained exogenously from foods such as red meat. The purines are guanine and adenine. These undergo metabolism in the liver to form uric acid.
Adenine forms adenosine through the enzyme purine nucleoside phosphorylase. Adenosine then reacts with water to form inosine and ammonia using the enzyme adenosine deaminase. Inosine goes on to form hypoxanthine through the enzyme purine nucleoside phosphorylase. Xanthine is formed from hypoxanthine using the enzyme xanthine dehydrogenase/ oxidase. Xanthine can also be formed from the purine guanine via guanine deaminase. Uric acid is produced from xanthine in the presence of xanthine dehydrogenase/ oxidase. Uric acid can enter the blood and produce toxic effects on the cardiovascular, renal and joints, leading to cardiovascular disease, kidney disease and arthritis/ gout.
References
Metabolism and Physiological Effects of Uric acid References
El Ridi, R., & Tallima, H. (2017). Physiological functions and pathogenic potential of uric acid: A review. Journal of advanced research, 8(5), 487–493. https://doi.org/10.1016/j.jare.2017.03.003
Ristic, B., Sikder, M. O., Bhutia, Y. D., & Ganapathy, V. (2020). Pharmacologic inducers of the uric acid exporter ABCG2 as potential drugs for treatment of Gouty Arthritis. Asian Journal of Pharmaceutical Sciences, 15(2), 173–180. https://doi.org/10.1016/j.ajps.2019.10.002
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A: HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D608-D617. doi: 10.1093/nar/gkx1089.
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M: KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551. doi: 10.1093/nar/gkaa970.
Pannicke U, Tuchschmid P, Friedrich W, Bartram CR, Schwarz K: Two novel missense and frameshift mutations in exons 5 and 6 of the purine nucleoside phosphorylase (PNP) gene in a severe combined immunodeficiency (SCID) patient. Hum Genet. 1996 Dec;98(6):706-9. doi: 10.1007/s004390050290.
Pubmed: 8931706
Williams SR, Goddard JM, Martin DW Jr: Human purine nucleoside phosphorylase cDNA sequence and genomic clone characterization. Nucleic Acids Res. 1984 Jul 25;12(14):5779-87. doi: 10.1093/nar/12.14.5779.
Pubmed: 6087295
Williams SR, Gekeler V, McIvor RS, Martin DW Jr: A human purine nucleoside phosphorylase deficiency caused by a single base change. J Biol Chem. 1987 Feb 15;262(5):2332-8.
Pubmed: 3029074
Valerio D, Duyvesteyn MG, Dekker BM, Weeda G, Berkvens TM, van der Voorn L, van Ormondt H, van der Eb AJ: Adenosine deaminase: characterization and expression of a gene with a remarkable promoter. EMBO J. 1985 Feb;4(2):437-43.
Pubmed: 3839456
Rostampour F, Biglari M, Vaisi-Raygani A, Salimi S, Tavilani H: Adenosine deaminase activity in fertile and infertile men. Andrologia. 2012 May;44 Suppl 1:586-9. doi: 10.1111/j.1439-0272.2011.01231.x. Epub 2011 Sep 15.
Pubmed: 21919946
Daddona PE, Shewach DS, Kelley WN, Argos P, Markham AF, Orkin SH: Human adenosine deaminase. cDNA and complete primary amino acid sequence. J Biol Chem. 1984 Oct 10;259(19):12101-6.
Pubmed: 6090454
Levartovsky D, Lagziel A, Sperling O, Liberman U, Yaron M, Hosoya T, Ichida K, Peretz H: XDH gene mutation is the underlying cause of classical xanthinuria: a second report. Kidney Int. 2000 Jun;57(6):2215-20. doi: 10.1046/j.1523-1755.2000.00082.x.
Pubmed: 10844591
Ichida K, Amaya Y, Noda K, Minoshima S, Hosoya T, Sakai O, Shimizu N, Nishino T: Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase): structural analysis of the protein and chromosomal location of the gene. Gene. 1993 Nov 15;133(2):279-84. doi: 10.1016/0378-1119(93)90652-j.
Pubmed: 8224915
Xu P, Huecksteadt TP, Harrison R, Hoidal JR: Molecular cloning, tissue expression of human xanthine dehydrogenase. Biochem Biophys Res Commun. 1994 Mar 15;199(2):998-1004. doi: 10.1006/bbrc.1994.1328.
Pubmed: 8135849
Yuan G, Bin JC, McKay DJ, Snyder FF: Cloning and characterization of human guanine deaminase. Purification and partial amino acid sequence of the mouse protein. J Biol Chem. 1999 Mar 19;274(12):8175-80. doi: 10.1074/jbc.274.12.8175.
Pubmed: 10075721
Kuwahara H, Araki N, Makino K, Masuko N, Honda S, Kaibuchi K, Fukunaga K, Miyamoto E, Ogawa M, Saya H: A novel NE-dlg/SAP102-associated protein, p51-nedasin, related to the amidohydrolase superfamily, interferes with the association between NE-dlg/SAP102 and N-methyl-D-aspartate receptor. J Biol Chem. 1999 Nov 5;274(45):32204-14. doi: 10.1074/jbc.274.45.32204.
Pubmed: 10542258
Nagase T, Ishikawa K, Kikuno R, Hirosawa M, Nomura N, Ohara O: Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 1999 Oct 29;6(5):337-45. doi: 10.1093/dnares/6.5.337.
Pubmed: 10574462
Zhang W, Mojsilovic-Petrovic J, Andrade MF, Zhang H, Ball M, Stanimirovic DB: The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. FASEB J. 2003 Nov;17(14):2085-7. doi: 10.1096/fj.02-1131fje. Epub 2003 Sep 4.
Pubmed: 12958161
Ozvegy-Laczka C, Koblos G, Sarkadi B, Varadi A: Single amino acid (482) variants of the ABCG2 multidrug transporter: major differences in transport capacity and substrate recognition. Biochim Biophys Acta. 2005 Feb 1;1668(1):53-63. doi: 10.1016/j.bbamem.2004.11.005.
Pubmed: 15670731
Henriksen U, Gether U, Litman T: Effect of Walker A mutation (K86M) on oligomerization and surface targeting of the multidrug resistance transporter ABCG2. J Cell Sci. 2005 Apr 1;118(Pt 7):1417-26. doi: 10.1242/jcs.01729. Epub 2005 Mar 15.
Pubmed: 15769853
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings