
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Capecitabine Action Pathway (New)
Homo sapiens
Drug Action Pathway
Created: 2022-01-11
Last Updated: 2023-10-25
Capecitabine is a nucleoside metabolic inhibitor, orally-administered chemotherapeutic agent indicated to treat colon, colorectal and breast cancer. Capecitabine is a prodrug, that is enzymatically converted to fluorouracil (antimetabolite) in the tumor, where it inhibits DNA synthesis and slows growth of tumor tissue. Capecitabine is used for the treatment of patients with metastatic breast cancer resistant to both paclitaxel and an anthracycline-containing chemotherapy regimen. May also be used in combination with docetaxel for the treatment of metastatic breast cancer in patients who have failed to respond to, or recurred or relasped during or following anthracycline-containing chemotherapy. Capecitabine is used alone as an adjuvant therapy following the complete resection of primary tumor in patients with stage III colon cancer when monotherapy with fluroprymidine is preferred. Capecitabine is a prodrug that is selectively tumour-activated to its cytotoxic moiety, fluorouracil, by thymidine phosphorylase, an enzyme found in higher concentrations in many tumors compared to normal tissues or plasma. Fluorouracil is further metabolized to two active metabolites, 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) and 5-fluorouridine triphosphate (FUTP), within normal and tumour cells. These metabolites cause cell injury by two different mechanisms. First, FdUMP and the folate cofactor, N5-10-methylenetetrahydrofolate, bind to thymidylate synthase (TS) to form a covalently bound ternary complex. This binding inhibits the formation of thymidylate from 2'-deaxyuridylate. Thymidylate is the necessary precursor of thymidine triphosphate, which is essential for the synthesis of DNA, therefore a deficiency of this compound can inhibit cell division. Secondly, nuclear transcriptional enzymes can mistakenly incorporate FUTP in place of uridine triphosphate (UTP) during the synthesis of RNA. This metabolic error can interfere with RNA processing and protein synthesis through the production of fraudulent RNA.
References
Capecitabine Pathway (New) References
Deepthi A, Raju S, Kalyani A, Udaya K. M, Vanaja A. Targeted Drug Delivery to the Nucleus and its Potential Role in Cancer Chemotherapy. J. Pharm. Sci. & Res. 5 (2): 48-56, 2013.
Higby K. J, Bischal M. M, Campbell C. A, Anderson R. G, Broskin S. A, Foltz L. E, Koper J. A, Nickle A. C, Resendes K. K. 5-Fluorouracil disrupts nuclear export and nuclear pore permeability in a calcium dependent manner. Apoptosis 22: 393-405, 2017.
Bunz F. Thymidylate synthase and 5-fluorouracil: a cautionary tale. Cancer Biology & Therapy 7 (7): 995-996, 2008.
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Takeishi K, Kaneda S, Ayusawa D, Shimizu K, Gotoh O, Seno T: Nucleotide sequence of a functional cDNA for human thymidylate synthase. Nucleic Acids Res. 1985 Mar 25;13(6):2035-43. doi: 10.1093/nar/13.6.2035.
Pubmed: 2987839
Kaneda S, Nalbantoglu J, Takeishi K, Shimizu K, Gotoh O, Seno T, Ayusawa D: Structural and functional analysis of the human thymidylate synthase gene. J Biol Chem. 1990 Nov 25;265(33):20277-84.
Pubmed: 2243092
Hisatomi H, Tanemura H, Iizuka T, Katsumata K, Nagao K, Sumida H, Udagawa H, Hikiji K: Differential alternative splicing expressions of thymidylate synthase isoforms. Cancer Lett. 2003 Apr 25;193(2):127-31. doi: 10.1016/s0304-3835(03)00005-3.
Pubmed: 12706868
Nizon M, Huber C, De Leonardis F, Merrina R, Forlino A, Fradin M, Tuysuz B, Abu-Libdeh BY, Alanay Y, Albrecht B, Al-Gazali L, Basaran SY, Clayton-Smith J, Desir J, Gill H, Greally MT, Koparir E, van Maarle MC, MacKay S, Mortier G, Morton J, Sillence D, Vilain C, Young I, Zerres K, Le Merrer M, Munnich A, Le Goff C, Rossi A, Cormier-Daire V: Further delineation of CANT1 phenotypic spectrum and demonstration of its role in proteoglycan synthesis. Hum Mutat. 2012 Aug;33(8):1261-6. doi: 10.1002/humu.22104. Epub 2012 May 22.
Pubmed: 22539336
Balasubramanian K, Li B, Krakow D, Nevarez L, Ho PJ, Ainsworth JA, Nickerson DA, Bamshad MJ, Immken L, Lachman RS, Cohn DH: MED resulting from recessively inherited mutations in the gene encoding calcium-activated nucleotidase CANT1. Am J Med Genet A. 2017 Sep;173(9):2415-2421. doi: 10.1002/ajmg.a.38349. Epub 2017 Jul 25.
Pubmed: 28742282
Laccone F, Schoner K, Krabichler B, Kluge B, Schwerdtfeger R, Schulze B, Zschocke J, Rehder H: Desbuquois dysplasia type I and fetal hydrops due to novel mutations in the CANT1 gene. Eur J Hum Genet. 2011 Nov;19(11):1133-7. doi: 10.1038/ejhg.2011.101. Epub 2011 Jun 8.
Pubmed: 21654728
Mehus JG, Deloukas P, Lambeth DO: NME6: a new member of the nm23/nucleoside diphosphate kinase gene family located on human chromosome 3p21.3. Hum Genet. 1999 Jun;104(6):454-9. doi: 10.1007/s004390050987.
Pubmed: 10453732
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Muzny DM, Scherer SE, Kaul R, Wang J, Yu J, Sudbrak R, Buhay CJ, Chen R, Cree A, Ding Y, Dugan-Rocha S, Gill R, Gunaratne P, Harris RA, Hawes AC, Hernandez J, Hodgson AV, Hume J, Jackson A, Khan ZM, Kovar-Smith C, Lewis LR, Lozado RJ, Metzker ML, Milosavljevic A, Miner GR, Morgan MB, Nazareth LV, Scott G, Sodergren E, Song XZ, Steffen D, Wei S, Wheeler DA, Wright MW, Worley KC, Yuan Y, Zhang Z, Adams CQ, Ansari-Lari MA, Ayele M, Brown MJ, Chen G, Chen Z, Clendenning J, Clerc-Blankenburg KP, Chen R, Chen Z, Davis C, Delgado O, Dinh HH, Dong W, Draper H, Ernst S, Fu G, Gonzalez-Garay ML, Garcia DK, Gillett W, Gu J, Hao B, Haugen E, Havlak P, He X, Hennig S, Hu S, Huang W, Jackson LR, Jacob LS, Kelly SH, Kube M, Levy R, Li Z, Liu B, Liu J, Liu W, Lu J, Maheshwari M, Nguyen BV, Okwuonu GO, Palmeiri A, Pasternak S, Perez LM, Phelps KA, Plopper FJ, Qiang B, Raymond C, Rodriguez R, Saenphimmachak C, Santibanez J, Shen H, Shen Y, Subramanian S, Tabor PE, Verduzco D, Waldron L, Wang J, Wang J, Wang Q, Williams GA, Wong GK, Yao Z, Zhang J, Zhang X, Zhao G, Zhou J, Zhou Y, Nelson D, Lehrach H, Reinhardt R, Naylor SL, Yang H, Olson M, Weinstock G, Gibbs RA: The DNA sequence, annotation and analysis of human chromosome 3. Nature. 2006 Apr 27;440(7088):1194-8. doi: 10.1038/nature04728.
Pubmed: 16641997
Suttle DP, Bugg BY, Winkler JK, Kanalas JJ: Molecular cloning and nucleotide sequence for the complete coding region of human UMP synthase. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1754-8. doi: 10.1073/pnas.85.6.1754.
Pubmed: 3279416
Suchi M, Harada N, Tsuboi T, Asai K, Okajima K, Wada Y, Takagi Y: Molecular cloning of human UMP synthase. Adv Exp Med Biol. 1989;253A:511-8. doi: 10.1007/978-1-4684-5673-8_83.
Pubmed: 2624233
Suchi M, Mizuno H, Kawai Y, Tsuboi T, Sumi S, Okajima K, Hodgson ME, Ogawa H, Wada Y: Molecular cloning of the human UMP synthase gene and characterization of point mutations in two hereditary orotic aciduria families. Am J Hum Genet. 1997 Mar;60(3):525-39.
Pubmed: 9042911
Van Rompay AR, Johansson M, Karlsson A: Phosphorylation of deoxycytidine analog monophosphates by UMP-CMP kinase: molecular characterization of the human enzyme. Mol Pharmacol. 1999 Sep;56(3):562-9. doi: 10.1124/mol.56.3.562.
Pubmed: 10462544
Pearman AT, Castro-Faria-Neto HC, McIntyre TM, Prescott SM, Stafforini DM: Characterization of human UMP-CMP kinase enzymatic activity and 5' untranslated region. Life Sci. 2001 Oct 5;69(20):2361-70. doi: 10.1016/s0024-3205(01)01322-4.
Pubmed: 11681623
Liou JY, Dutschman GE, Lam W, Jiang Z, Cheng YC: Characterization of human UMP/CMP kinase and its phosphorylation of D- and L-form deoxycytidine analogue monophosphates. Cancer Res. 2002 Mar 15;62(6):1624-31.
Pubmed: 11912132
Ishikawa F, Miyazono K, Hellman U, Drexler H, Wernstedt C, Hagiwara K, Usuki K, Takaku F, Risau W, Heldin CH: Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature. 1989 Apr 13;338(6216):557-62. doi: 10.1038/338557a0.
Pubmed: 2467210
Finnis C, Goodey A, Courtney M, Sleep D: Expression of recombinant platelet-derived endothelial cell growth factor in the yeast Saccharomyces cerevisiae. Yeast. 1992 Jan;8(1):57-60. doi: 10.1002/yea.320080106.
Pubmed: 1580101
Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, Bruskiewich R, Beare DM, Clamp M, Smink LJ, Ainscough R, Almeida JP, Babbage A, Bagguley C, Bailey J, Barlow K, Bates KN, Beasley O, Bird CP, Blakey S, Bridgeman AM, Buck D, Burgess J, Burrill WD, O'Brien KP, et al.: The DNA sequence of human chromosome 22. Nature. 1999 Dec 2;402(6761):489-95. doi: 10.1038/990031.
Pubmed: 10591208
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings