Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Allopurinol Action Pathway (New)
Homo sapiens
Drug Action Pathway
Created: 2022-02-13
Last Updated: 2023-10-25
Allopurinol is a xanthine oxidase inhibitor used to reduce urinary and serum uric acid concentrations in patients with gout, recurrent calcium oxalate calculi, and various malignancies.
Allopurinol administration can be in two forms, either oral or intravenous (IV). While oral administration is the standard route for gout and uric acid or calcium oxalate nephrolithiasis, IV allopurinol is for the prevention of tumor lysis syndrome and management of cancer therapy-induced hyperuricemia in patients who cannot tolerate oral therapy.
Allopurinol is a structural analog of the natural purine base, hypoxanthine. After ingestion, allopurinol is metabolized to its active metabolite, oxypurinol in the liver, which acts as an inhibitor of xanthine oxidase enzyme.
Xanthine oxidase is an enzyme involved in purine metabolism. Adenosine is a purine which is converted to adenosine by the enzyme purine nucleoside phosphorylase. Adenosine is then converted to inosine via the enzyme adenosine deaminase. Hypoxanthine is formed from inosine using the enzyme purine nucleoside phosphorylase. Hypoxanthine then forms xanthine through xanthine oxidase. Guanine, another purine found in the body, can be converted to xanthine by the enzyme guanine deaminase. The xanthine formed from these purines go on the form uric acid using the enzyme xanthine oxidase.
Allopurinol and its active metabolite inhibit xanthine oxidase, the enzyme that converts hypoxanthine to xanthine and xanthine to uric acid. This drug increases the reutilization of hypoxanthine and xanthine for nucleotide and nucleic acid synthesis by a process that involves the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase). This process results in an increased nucleotide concentration, which causes feedback inhibition of de novo purine synthesis. The end result is decreased urine and serum uric acid concentrations, which decreases the incidence of gout symptoms.
References
Allopurinol Pathway (New) References
Kannangara DR, Roberts DM, Furlong TJ, Graham GG, Williams KM, Day RO: Oxypurinol, allopurinol and allopurinol-1-riboside in plasma following an acute overdose of allopurinol in a patient with advanced chronic kidney disease. Br J Clin Pharmacol. 2012 May;73(5):828-9. doi: 10.1111/j.1365-2125.2011.04147.x.
Pubmed: 22098112
Qurie A, Bansal P, Goyal A, Musa R: Allopurinol
Pubmed: 29763117
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A: HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D608-D617. doi: 10.1093/nar/gkx1089.
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M: KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551. doi: 10.1093/nar/gkaa970.
Pannicke U, Tuchschmid P, Friedrich W, Bartram CR, Schwarz K: Two novel missense and frameshift mutations in exons 5 and 6 of the purine nucleoside phosphorylase (PNP) gene in a severe combined immunodeficiency (SCID) patient. Hum Genet. 1996 Dec;98(6):706-9. doi: 10.1007/s004390050290.
Pubmed: 8931706
Williams SR, Goddard JM, Martin DW Jr: Human purine nucleoside phosphorylase cDNA sequence and genomic clone characterization. Nucleic Acids Res. 1984 Jul 25;12(14):5779-87. doi: 10.1093/nar/12.14.5779.
Pubmed: 6087295
Williams SR, Gekeler V, McIvor RS, Martin DW Jr: A human purine nucleoside phosphorylase deficiency caused by a single base change. J Biol Chem. 1987 Feb 15;262(5):2332-8.
Pubmed: 3029074
Valerio D, Duyvesteyn MG, Dekker BM, Weeda G, Berkvens TM, van der Voorn L, van Ormondt H, van der Eb AJ: Adenosine deaminase: characterization and expression of a gene with a remarkable promoter. EMBO J. 1985 Feb;4(2):437-43.
Pubmed: 3839456
Rostampour F, Biglari M, Vaisi-Raygani A, Salimi S, Tavilani H: Adenosine deaminase activity in fertile and infertile men. Andrologia. 2012 May;44 Suppl 1:586-9. doi: 10.1111/j.1439-0272.2011.01231.x. Epub 2011 Sep 15.
Pubmed: 21919946
Daddona PE, Shewach DS, Kelley WN, Argos P, Markham AF, Orkin SH: Human adenosine deaminase. cDNA and complete primary amino acid sequence. J Biol Chem. 1984 Oct 10;259(19):12101-6.
Pubmed: 6090454
Levartovsky D, Lagziel A, Sperling O, Liberman U, Yaron M, Hosoya T, Ichida K, Peretz H: XDH gene mutation is the underlying cause of classical xanthinuria: a second report. Kidney Int. 2000 Jun;57(6):2215-20. doi: 10.1046/j.1523-1755.2000.00082.x.
Pubmed: 10844591
Ichida K, Amaya Y, Noda K, Minoshima S, Hosoya T, Sakai O, Shimizu N, Nishino T: Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase): structural analysis of the protein and chromosomal location of the gene. Gene. 1993 Nov 15;133(2):279-84. doi: 10.1016/0378-1119(93)90652-j.
Pubmed: 8224915
Xu P, Huecksteadt TP, Harrison R, Hoidal JR: Molecular cloning, tissue expression of human xanthine dehydrogenase. Biochem Biophys Res Commun. 1994 Mar 15;199(2):998-1004. doi: 10.1006/bbrc.1994.1328.
Pubmed: 8135849
Yuan G, Bin JC, McKay DJ, Snyder FF: Cloning and characterization of human guanine deaminase. Purification and partial amino acid sequence of the mouse protein. J Biol Chem. 1999 Mar 19;274(12):8175-80. doi: 10.1074/jbc.274.12.8175.
Pubmed: 10075721
Kuwahara H, Araki N, Makino K, Masuko N, Honda S, Kaibuchi K, Fukunaga K, Miyamoto E, Ogawa M, Saya H: A novel NE-dlg/SAP102-associated protein, p51-nedasin, related to the amidohydrolase superfamily, interferes with the association between NE-dlg/SAP102 and N-methyl-D-aspartate receptor. J Biol Chem. 1999 Nov 5;274(45):32204-14. doi: 10.1074/jbc.274.45.32204.
Pubmed: 10542258
Nagase T, Ishikawa K, Kikuno R, Hirosawa M, Nomura N, Ohara O: Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 1999 Oct 29;6(5):337-45. doi: 10.1093/dnares/6.5.337.
Pubmed: 10574462
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings