Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Methamphetamine Dopamine Reuptake Inhibitor Action Pathway
Homo sapiens
Drug Action Pathway
Created: 2022-03-23
Last Updated: 2023-10-25
Methamphetamine (metamfetamine) is a psychostimulant and sympathomimetic drug. It is mainly taken recreationally but can be taken for ADHD and exogenous obesity in the form of a drug called Desoxyn. Methamphetamine induces effects of euphoria and affects heart rate, body temperature, blood pressure, appetite, attention, mood, and responses associated with alertness or alarm conditions. The drug triggers mainly a fight or flight response in the body and brain.
Methamphetamine enters the brain readily through the blood brain barrier due to its small size and lipophilicity. Once in the brain it acts on dopamine, norepinephrine, and serotonin neurological pathways. Dopamine is synthesized mainly in the ventral tegmental area from tyrosine into L-dopa which then synthesizes dopamine, and it is then stored in the presynaptic vesicles in the required areas. Methamphetamine enters the neuron through sodium-dependent dopamine transporters where it also is a negative modulator for the transporter, preventing dopamine from re-entering the neuron. Methamphetamine is also capable of entering the neuron through diffusion. It inhibits Amine oxidase [flavin-containing] A ( MAOA) which is an enzyme that metabolizes dopamine, therefore the inhibition of it prevents the metabolic degradation of dopamine in the neuron. This increases the concentration of dopamine in the cytosol. Once in the neuron it inhibits synaptic vesicular amine transporter, preventing dopamine from entering synaptic vesicles, but also displacing dopamine from the vesicles and making it spew into the cytosol. Methamphetamine activates trace amine receptor 1 which internalizes sodium dependent dopamine transporters as well as reversing of the transporter. This causes the high concentration of dopamine in the cytosol to be ejected into the synapse where it accumulates since it cannot re-enter the neuron due to the inhibition of the sodium-dependent dopamine transporter. The high concentration of dopamine in the synapse activates the dopamine receptors on the postsynaptic membrane. D4 dopamine receptors are the receptors implicated in ADHD, but the high concentration of dopamine would activate all dopamine receptors. These receptors in the prefrontal cortex regulate impulse control, motivation, and attention through G-protein coupled cascades.
References
Methamphetamine Dopamine Reuptake Inhibitor Pathway References
Deacon AC: The measurement of 5-hydroxyindoleacetic acid in urine. Ann Clin Biochem. 1994 May;31 ( Pt 3):215-32. doi: 10.1177/000456329403100302.
Pubmed: 7520678
Nobuyuki Shigetoh, Hiroshi Nakayama, Jinsei Miyazaki, Tadayasu Mitsumata, "Labelling colors for detecting cocaine or methamphetamine, method of preparing the same and detector for cocaine or methamphetamine." U.S. Patent US5571727, issued October, 1981.
Schepers RJ, Oyler JM, Joseph RE Jr, Cone EJ, Moolchan ET, Huestis MA: Methamphetamine and amphetamine pharmacokinetics in oral fluid and plasma after controlled oral methamphetamine administration to human volunteers. Clin Chem. 2003 Jan;49(1):121-32
Bennett BA, Hollingsworth CK, Martin RS, Harp JJ: Methamphetamine-induced alterations in dopamine transporter function. Brain Res. 1998 Jan 26;782(1-2):219-27.
Fone KC, Nutt DJ: Stimulants: use and abuse in the treatment of attention deficit hyperactivity disorder. Curr Opin Pharmacol. 2005 Feb;5(1):87-93.
Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A: Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3495-500. Epub 2005 Feb 22.
Madras BK, Miller GM, Fischman AJ: The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005 Jun 1;57(11):1397-409. Epub 2005 Jan 5.
Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR: New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol. 2007;47:681-98.
Sulzer D, Sonders MS, Poulsen NW, Galli A: Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol. 2005 Apr;75(6):406-33.
Henry JP, Sagne C, Bedet C, Gasnier B: The vesicular monoamine transporter: from chromaffin granule to brain. Neurochem Int. 1998 Mar;32(3):227-46.
Xie Z, Miller GM: Trace amine-associated receptor 1 is a modulator of the dopamine transporter. J Pharmacol Exp Ther. 2007 Apr;321(1):128-36. Epub 2007 Jan 18.
Ulus IH, Maher TJ, Wurtman RJ: Characterization of phentermine and related compounds as monoamine oxidase (MAO) inhibitors. Biochem Pharmacol. 2000 Jun 15;59(12):1611-21.
Kaneda N, Kobayashi K, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T: Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene. Biochem Biophys Res Commun. 1987 Aug 14;146(3):971-5. doi: 10.1016/0006-291x(87)90742-x.
Pubmed: 2887169
Grima B, Lamouroux A, Boni C, Julien JF, Javoy-Agid F, Mallet J: A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics. Nature. 1987 Apr 16-22;326(6114):707-11. doi: 10.1038/326707a0.
Pubmed: 2882428
Kobayashi K, Kaneda N, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T: Isolation of a full-length cDNA clone encoding human tyrosine hydroxylase type 3. Nucleic Acids Res. 1987 Aug 25;15(16):6733. doi: 10.1093/nar/15.16.6733.
Pubmed: 2888085
Ichinose H, Kurosawa Y, Titani K, Fujita K, Nagatsu T: Isolation and characterization of a cDNA clone encoding human aromatic L-amino acid decarboxylase. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1024-30. doi: 10.1016/0006-291x(89)91772-5.
Pubmed: 2590185
Scherer LJ, McPherson JD, Wasmuth JJ, Marsh JL: Human dopa decarboxylase: localization to human chromosome 7p11 and characterization of hepatic cDNAs. Genomics. 1992 Jun;13(2):469-71.
Pubmed: 1612608
Sumi-Ichinose C, Ichinose H, Takahashi E, Hori T, Nagatsu T: Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis. Biochemistry. 1992 Mar 3;31(8):2229-38. doi: 10.1021/bi00123a004.
Pubmed: 1540578
Lundstrom K, Salminen M, Jalanko A, Savolainen R, Ulmanen I: Cloning and characterization of human placental catechol-O-methyltransferase cDNA. DNA Cell Biol. 1991 Apr;10(3):181-9. doi: 10.1089/dna.1991.10.181.
Pubmed: 1707278
Bertocci B, Miggiano V, Da Prada M, Dembic Z, Lahm HW, Malherbe P: Human catechol-O-methyltransferase: cloning and expression of the membrane-associated form. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1416-20. doi: 10.1073/pnas.88.4.1416.
Pubmed: 1847521
Tenhunen J, Salminen M, Lundstrom K, Kiviluoto T, Savolainen R, Ulmanen I: Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters. Eur J Biochem. 1994 Aug 1;223(3):1049-59. doi: 10.1111/j.1432-1033.1994.tb19083.x.
Pubmed: 8055944
Hsu YP, Weyler W, Chen S, Sims KB, Rinehart WB, Utterback MC, Powell JF, Breakefield XO: Structural features of human monoamine oxidase A elucidated from cDNA and peptide sequences. J Neurochem. 1988 Oct;51(4):1321-4. doi: 10.1111/j.1471-4159.1988.tb03105.x.
Pubmed: 3418353
Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC: cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4934-8. doi: 10.1073/pnas.85.13.4934.
Pubmed: 3387449
Chen ZY, Hotamisligil GS, Huang JK, Wen L, Ezzeddine D, Aydin-Muderrisoglu N, Powell JF, Huang RH, Breakefield XO, Craig I, et al.: Structure of the human gene for monoamine oxidase type A. Nucleic Acids Res. 1991 Aug 25;19(16):4537-41. doi: 10.1093/nar/19.16.4537.
Pubmed: 1886775
Surratt CK, Persico AM, Yang XD, Edgar SR, Bird GS, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR: A human synaptic vesicle monoamine transporter cDNA predicts posttranslational modifications, reveals chromosome 10 gene localization and identifies TaqI RFLPs. FEBS Lett. 1993 Mar 8;318(3):325-30. doi: 10.1016/0014-5793(93)80539-7.
Pubmed: 8095030
Erickson JD, Eiden LE: Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem. 1993 Dec;61(6):2314-7. doi: 10.1111/j.1471-4159.1993.tb07476.x.
Pubmed: 8245983
Peter D, Finn JP, Klisak I, Liu Y, Kojis T, Heinzmann C, Roghani A, Sparkes RS, Edwards RH: Chromosomal localization of the human vesicular amine transporter genes. Genomics. 1993 Dec;18(3):720-3.
Pubmed: 7905859
Vandenbergh DJ, Persico AM, Uhl GR: A human dopamine transporter cDNA predicts reduced glycosylation, displays a novel repetitive element and provides racially-dimorphic TaqI RFLPs. Brain Res Mol Brain Res. 1992 Sep;15(1-2):161-6. doi: 10.1016/0169-328x(92)90165-8.
Pubmed: 1359373
Giros B, el Mestikawy S, Godinot N, Zheng K, Han H, Yang-Feng T, Caron MG: Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol. 1992 Sep;42(3):383-90.
Pubmed: 1406597
Pristupa ZB, Wilson JM, Hoffman BJ, Kish SJ, Niznik HB: Pharmacological heterogeneity of the cloned and native human dopamine transporter: disassociation of [3H]WIN 35,428 and [3H]GBR 12,935 binding. Mol Pharmacol. 1994 Jan;45(1):125-35.
Pubmed: 8302271
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings