Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Bupropion Action Pathway
Homo sapiens
Drug Action Pathway
Created: 2022-04-01
Last Updated: 2023-10-25
Bupropion, known as the brand name Wellbutrin, is a norepinephrine/dopamine reuptake inhibitor (NDRI) used most commonly as a treatment for major depressive disorder (MDD), and seasonal affective disorder (SAD). It can also be used as a treatment for smoking cessation. Unlike most other drugs used to treat MDD, bupropion has been found to have no interaction with serotonin transporters. Bupropion works with other drugs to help with other neurological disorders such as seizures, and ADHD with bipolar comorbidity.
Bupropion works by weakly inhibiting dopamine and norepinephrine transporters in presynaptic neurons. Dopamine is synthesized from tyrosine which is catalyzed by Tyrosine 3-monooxygenase into L-dopa which is catalyzed by Aromatic-L-amino-acid decarboxylase into dopamine. This mainly occurs in the substantia nigra, ventral tegmental area, and hypothalamus which are all parts of the limbic system where bupropion has the most effect in regulating MDD. Dopamine is released into the synapse where it is much more difficult for it to re-enter the presynaptic neuron due to bupropion inhibiting the sodium-dependent dopamine receptor. This causes dopamine to accumulate in higher concentrations in the synapse. The high concentration of dopamine activates dopamine receptors prolongs the duration of action on dopamine receptors. The D1 dopamine receptor is the receptor found to receptor most associated with MDD. There is also evidence that the D1-D2 heteromer is implicated in MDD, but that has not been studied enough to understand its effects. The D1 dopamine receptor activates Gs coupled protein which with GTP activates adenylate cyclase. Adenylate cyclase catalyzes ATP into cAMP which activates PKA which causes neuronal excitability. This helps regulate mood and behaviour in the brain as well as activating the reward system.
Norepinephrine's effects on MDD is less studied and less understood than dopamine. Norepinephrine is synthesized in the locus ceruleus from dopamine which is catalyzed by Dopamine beta-hydroxylase into norepinephrine. Norepinephrine is released into the synapse where it accumulates because bupropion is weakly inhibiting the sodium-dependent noradrenaline receptor which prevents norepinephrine from re-entering the presynaptic neuron. This higher concentration of norepinephrine prolongs the duration of action on adrenergic receptors. Depressed patients have drastically low levels of norepinephrine, but a defeciency in the adrenergic receptors themselves seems to be implicated in MDD as well. Norepinephrine activates Alpha-1A adrenergic receptors in the brain, which are desensitized in the brains of depressed patients and implicated in the limbic system for regulating behaviour and mood. Activation of Alpha-1A receptors activates the Gq signalling cascade which has a variety of excitatory effects on neurons in the brain, especially in the limbic system. The exact effects of norepinephrine in the brain, especially in the brain of patients with MDD is still being researched, and therefore is still not entirely understood. Depression does seem to cause problems with the activation of the receptors which means more norepinephrine is required to see the same effects as in people without MDD. Bupropion does this at least for alpha-1A adregnergic receptors in the limbic system. Alpha-2 adrenergic receptors have been found to have a higher density in the brain of depressed patients, and seem to cause symptoms of depression. Beta adrenergic receptors have also been observed to be highly activated in patients with depression.
References
Bupropion Pathway References
Maletic, V., Eramo, A., Gwin, K., Offord, S. J., & Duffy, R. A. (2017). The role of norepinephrine and its α-adrenergic receptors in the pathophysiology and treatment of major depressive disorder and schizophrenia: a systematic review. Frontiers in psychiatry, 8, 42.
Moret, C., & Briley, M. (2011). The importance of norepinephrine in depression. Neuropsychiatric disease and treatment, 7(Suppl 1), 9–13. https://doi.org/10.2147/NDT.S19619
Thase ME, Haight BR, Richard N, Rockett CB, Mitton M, Modell JG, VanMeter S, Harriett AE, Wang Y: Remission rates following antidepressant therapy with bupropion or selective serotonin reuptake inhibitors: a meta-analysis of original data from 7 randomized controlled trials. J Clin Psychiatry. 2005 Aug;66(8):974-81.
Stahl SM, Pradko JF, Haight BR, Modell JG, Rockett CB, Learned-Coughlin S: A Review of the Neuropharmacology of Bupropion, a Dual Norepinephrine and Dopamine Reuptake Inhibitor. Prim Care Companion J Clin Psychiatry. 2004;6(4):159-166
Miller DK, Sumithran SP, Dwoskin LP: Bupropion inhibits nicotine-evoked [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine and from rat hippocampal slices preloaded with [(3)H]norepinephrine. J Pharmacol Exp Ther. 2002 Sep;302(3):1113-22.
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Maldonado F, Hanks SK: A cDNA clone encoding human cAMP-dependent protein kinase catalytic subunit C alpha. Nucleic Acids Res. 1988 Aug 25;16(16):8189-90. doi: 10.1093/nar/16.16.8189.
Pubmed: 2843813
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Beebe SJ, Oyen O, Sandberg M, Froysa A, Hansson V, Jahnsen T: Molecular cloning of a tissue-specific protein kinase (C gamma) from human testis--representing a third isoform for the catalytic subunit of cAMP-dependent protein kinase. Mol Endocrinol. 1990 Mar;4(3):465-75. doi: 10.1210/mend-4-3-465.
Pubmed: 2342480
Bechtel S, Rosenfelder H, Duda A, Schmidt CP, Ernst U, Wellenreuther R, Mehrle A, Schuster C, Bahr A, Blocker H, Heubner D, Hoerlein A, Michel G, Wedler H, Kohrer K, Ottenwalder B, Poustka A, Wiemann S, Schupp I: The full-ORF clone resource of the German cDNA Consortium. BMC Genomics. 2007 Oct 31;8:399. doi: 10.1186/1471-2164-8-399.
Pubmed: 17974005
Groussin L, Jullian E, Perlemoine K, Louvel A, Leheup B, Luton JP, Bertagna X, Bertherat J: Mutations of the PRKAR1A gene in Cushing's syndrome due to sporadic primary pigmented nodular adrenocortical disease. J Clin Endocrinol Metab. 2002 Sep;87(9):4324-9. doi: 10.1210/jc.2002-020592.
Pubmed: 12213893
Sandberg M, Tasken K, Oyen O, Hansson V, Jahnsen T: Molecular cloning, cDNA structure and deduced amino acid sequence for a type I regulatory subunit of cAMP-dependent protein kinase from human testis. Biochem Biophys Res Commun. 1987 Dec 31;149(3):939-45. doi: 10.1016/0006-291x(87)90499-2.
Pubmed: 3426618
Sandberg M, Skalhegg B, Jahnsen T: The two mRNA forms for the type I alpha regulatory subunit of cAMP-dependent protein kinase from human testis are due to the use of different polyadenylation site signals. Biochem Biophys Res Commun. 1990 Feb 28;167(1):323-30. doi: 10.1016/0006-291x(90)91768-n.
Pubmed: 2310396
Manchev VT, Hilpert M, Berrou E, Elaib Z, Aouba A, Boukour S, Souquere S, Pierron G, Rameau P, Andrews R, Lanza F, Bobe R, Vainchenker W, Rosa JP, Bryckaert M, Debili N, Favier R, Raslova H: A new form of macrothrombocytopenia induced by a germ-line mutation in the PRKACG gene. Blood. 2014 Oct 16;124(16):2554-63. doi: 10.1182/blood-2014-01-551820. Epub 2014 Jul 24.
Pubmed: 25061177
Reinton N, Haugen TB, Orstavik S, Skalhegg BS, Hansson V, Jahnsen T, Tasken K: The gene encoding the C gamma catalytic subunit of cAMP-dependent protein kinase is a transcribed retroposon. Genomics. 1998 Apr 15;49(2):290-7. doi: 10.1006/geno.1998.5240.
Pubmed: 9598317
Solberg R, Tasken K, Keiserud A, Jahnsen T: Molecular cloning, cDNA structure and tissue-specific expression of the human regulatory subunit RI beta of cAMP-dependent protein kinases. Biochem Biophys Res Commun. 1991 Apr 15;176(1):166-72. doi: 10.1016/0006-291x(91)90904-l.
Pubmed: 1708242
Solberg R, Tasken K, Wen W, Coghlan VM, Meinkoth JL, Scott JD, Jahnsen T, Taylor SS: Human regulatory subunit RI beta of cAMP-dependent protein kinases: expression, holoenzyme formation and microinjection into living cells. Exp Cell Res. 1994 Oct;214(2):595-605. doi: 10.1006/excr.1994.1297.
Pubmed: 7925653
Oyen O, Myklebust F, Scott JD, Hansson V, Jahnsen T: Human testis cDNA for the regulatory subunit RII alpha of cAMP-dependent protein kinase encodes an alternate amino-terminal region. FEBS Lett. 1989 Mar 27;246(1-2):57-64. doi: 10.1016/0014-5793(89)80253-4.
Pubmed: 2540040
Muzny DM, Scherer SE, Kaul R, Wang J, Yu J, Sudbrak R, Buhay CJ, Chen R, Cree A, Ding Y, Dugan-Rocha S, Gill R, Gunaratne P, Harris RA, Hawes AC, Hernandez J, Hodgson AV, Hume J, Jackson A, Khan ZM, Kovar-Smith C, Lewis LR, Lozado RJ, Metzker ML, Milosavljevic A, Miner GR, Morgan MB, Nazareth LV, Scott G, Sodergren E, Song XZ, Steffen D, Wei S, Wheeler DA, Wright MW, Worley KC, Yuan Y, Zhang Z, Adams CQ, Ansari-Lari MA, Ayele M, Brown MJ, Chen G, Chen Z, Clendenning J, Clerc-Blankenburg KP, Chen R, Chen Z, Davis C, Delgado O, Dinh HH, Dong W, Draper H, Ernst S, Fu G, Gonzalez-Garay ML, Garcia DK, Gillett W, Gu J, Hao B, Haugen E, Havlak P, He X, Hennig S, Hu S, Huang W, Jackson LR, Jacob LS, Kelly SH, Kube M, Levy R, Li Z, Liu B, Liu J, Liu W, Lu J, Maheshwari M, Nguyen BV, Okwuonu GO, Palmeiri A, Pasternak S, Perez LM, Phelps KA, Plopper FJ, Qiang B, Raymond C, Rodriguez R, Saenphimmachak C, Santibanez J, Shen H, Shen Y, Subramanian S, Tabor PE, Verduzco D, Waldron L, Wang J, Wang J, Wang Q, Williams GA, Wong GK, Yao Z, Zhang J, Zhang X, Zhao G, Zhou J, Zhou Y, Nelson D, Lehrach H, Reinhardt R, Naylor SL, Yang H, Olson M, Weinstock G, Gibbs RA: The DNA sequence, annotation and analysis of human chromosome 3. Nature. 2006 Apr 27;440(7088):1194-8. doi: 10.1038/nature04728.
Pubmed: 16641997
Dearry A, Gingrich JA, Falardeau P, Fremeau RT Jr, Bates MD, Caron MG: Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature. 1990 Sep 6;347(6288):72-6. doi: 10.1038/347072a0.
Pubmed: 2144334
Zhou QY, Grandy DK, Thambi L, Kushner JA, Van Tol HH, Cone R, Pribnow D, Salon J, Bunzow JR, Civelli O: Cloning and expression of human and rat D1 dopamine receptors. Nature. 1990 Sep 6;347(6288):76-80. doi: 10.1038/347076a0.
Pubmed: 2168520
Sunahara RK, Niznik HB, Weiner DM, Stormann TM, Brann MR, Kennedy JL, Gelernter JE, Rozmahel R, Yang YL, Israel Y, et al.: Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature. 1990 Sep 6;347(6288):80-3. doi: 10.1038/347080a0.
Pubmed: 1975640
Schmutz J, Martin J, Terry A, Couronne O, Grimwood J, Lowry S, Gordon LA, Scott D, Xie G, Huang W, Hellsten U, Tran-Gyamfi M, She X, Prabhakar S, Aerts A, Altherr M, Bajorek E, Black S, Branscomb E, Caoile C, Challacombe JF, Chan YM, Denys M, Detter JC, Escobar J, Flowers D, Fotopulos D, Glavina T, Gomez M, Gonzales E, Goodstein D, Grigoriev I, Groza M, Hammon N, Hawkins T, Haydu L, Israni S, Jett J, Kadner K, Kimball H, Kobayashi A, Lopez F, Lou Y, Martinez D, Medina C, Morgan J, Nandkeshwar R, Noonan JP, Pitluck S, Pollard M, Predki P, Priest J, Ramirez L, Retterer J, Rodriguez A, Rogers S, Salamov A, Salazar A, Thayer N, Tice H, Tsai M, Ustaszewska A, Vo N, Wheeler J, Wu K, Yang J, Dickson M, Cheng JF, Eichler EE, Olsen A, Pennacchio LA, Rokhsar DS, Richardson P, Lucas SM, Myers RM, Rubin EM: The DNA sequence and comparative analysis of human chromosome 5. Nature. 2004 Sep 16;431(7006):268-74. doi: 10.1038/nature02919.
Pubmed: 15372022
Mattera R, Codina J, Crozat A, Kidd V, Woo SL, Birnbaumer L: Identification by molecular cloning of two forms of the alpha-subunit of the human liver stimulatory (GS) regulatory component of adenylyl cyclase. FEBS Lett. 1986 Sep 29;206(1):36-42. doi: 10.1016/0014-5793(86)81336-9.
Pubmed: 3093273
Harris BA: Complete cDNA sequence of a human stimulatory GTP-binding protein alpha subunit. Nucleic Acids Res. 1988 Apr 25;16(8):3585. doi: 10.1093/nar/16.8.3585.
Pubmed: 3131741
Kozasa T, Itoh H, Tsukamoto T, Kaziro Y: Isolation and characterization of the human Gs alpha gene. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2081-5. doi: 10.1073/pnas.85.7.2081.
Pubmed: 3127824
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings