Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Anti-inflammatory pathway
Homo sapiens
Disease Pathway
Created: 2022-07-13
Last Updated: 2022-07-20
As the bacteria are cleared, tryptophan levels continue to drop as the indole
dioxygenase (IDO) enzyme becomes more active. IDO activation results in the generation (from
tryptophan) of kynurenine (and its other metabolites) through a self-stimulating autocrine
process. Kynurenine binds to the arylhydrocarbon receptor (AhR) found in most immune cells
[5-7]. In addition to increased kynurenine production via IDO mediated synthesis,
hyopalbuminemia can also lead to the release of bound kynurenine (and other
immunosuppressive LysoPCs) into the bloodstream to fuel this kynurenine-mediated
immunosuppression process. Regardless of the source of kynurenine, the kynurenine-bound
AhR will migrate to the nucleus to bind to NF-kB which leads to more production of the IDO
enzyme, which leads to more production of kynureneine and more loss of tryptophan. High
kynurenine levels and low tryptophan levels leads to a shift in T-cell differentiation from a TH1
response (pro-inflammatory) to the production of Treg cells and an anti-inflammatory response
[5-7]. This often marks the beginning of the body’s return to normal and the impending end of
the bacterial infection. High kynurenine levels also lead to the production of more IL10R (the
interluekin-10 receptor) via binding of kynurenine to the arylhydrocarbon receptor (AhR).
Activated AhR effectively increases the anti-inflammatory response from interleukin 10 (an
anti-inflammatory cytokine). Low tryptophan levels also lead to the activation of the general
control non-depressible 2 kinase (GCN2K) pathway, which inhibits the mammalian target of
rapamycin (mTOR), and protein kinase C signaling. This leads to T cell autophagy and anergy.
High levels of kynurenine also lead to the inhibition of T cell proliferation through induction of T
cell apoptosis [5-7].
After bacterial clearance, the anti-inflammatory pathway is further activated and the
pro-inflammatory process further deactivated. With the bacteria cleared, the production of
pro-inflammatory cytokines are reduced due to lack of activity from TLR4 and other TLR
stimulation. Additionally, anti-inflammatory cytokines (IL-10 and IL-4) are induced leading to a
shift in the T-cells from a pro-inflammatory TH1 response to an anti-inflammatory Treg
response. Likewise, with this T-cell shift, levels of cortisol and epinephrine drop, as do levels of
glucose and NO. Blood pressure begins to rise to normal. Kynurenine levels fall due to
continued kynurenine metabolism and uptake by serum albumin. More tryptophan is released
or produced to arrest the IDO synthesis (which reduces kynurenine levels) which further
reduces activation of the arylhydrocarbon receptor (AhR) which leads to the de-activation of
the NF-κB pathway, which leads to lower levels of pro-inflammatory cytokines. Itaconate,
accumulated by pro-inflammatory B-cells and T-cells, promotes the post-transcriptional
modification of KEAP1, which induces the expression of the antioxidant response and PPARγ.
PPARγ inhibits the NF-κB pathway and induces the expression of anti-inflammatory genes while
at the same time increasing fatty-acid β-oxidation and glutaminolysis. Glutamine and fatty acids
fuel the TCA cycle to support oxidative-phosphorylation. Aerobic glycolysis stops. The
accumulated lactate and α-Ketoglutarate promote cysteine modifications that induce the
expression of anti-inflammatory genes. Lactate levels in the blood drop as do glucose levels.
Macrophages and other T-cells and B-cells begin to die or apoptose, the number of white blood
cells drops and the body returns to normal.
References
Anti-inflammatory pathway References
Bello C, Heinisch PP, Mihalj M, Carrel T, Luedi MM. Indoleamine-2,3-Dioxygenase as a
Perioperative Marker of the Immune System. Front Physiol 2021; 12:766511.
Herrera-Van Oostdam AS, Castañeda-Delgado JE, Oropeza-Valdez JJ, et al. Immunometabolic
signatures predict risk of progression to sepsis in COVID-19. PLoS One 2021; 16(8): e0256784.
Guarnieri T. Hypothesis: Emerging Roles for Aryl Hydrocarbon Receptor in Orchestrating CoV-
2-Related Inflammation. Cells 2022; 11(4): 648.
Kieran M, Blank V, Logeat F, Vandekerckhove J, Lottspeich F, Le Bail O, Urban MB, Kourilsky P, Baeuerle PA, Israel A: The DNA binding subunit of NF-kappa B is identical to factor KBF1 and homologous to the rel oncogene product. Cell. 1990 Sep 7;62(5):1007-18. doi: 10.1016/0092-8674(90)90275-j.
Pubmed: 2203531
Bours V, Villalobos J, Burd PR, Kelly K, Siebenlist U: Cloning of a mitogen-inducible gene encoding a kappa B DNA-binding protein with homology to the rel oncogene and to cell-cycle motifs. Nature. 1990 Nov 1;348(6296):76-80. doi: 10.1038/348076a0.
Pubmed: 2234062
Meyer R, Hatada EN, Hohmann HP, Haiker M, Bartsch C, Rothlisberger U, Lahm HW, Schlaeger EJ, van Loon AP, Scheidereit C: Cloning of the DNA-binding subunit of human nuclear factor kappa B: the level of its mRNA is strongly regulated by phorbol ester or tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):966-70. doi: 10.1073/pnas.88.3.966.
Pubmed: 1992489
Bellingham J, Gregory-Evans K, Gregory-Evans CY: Mapping of human interferon regulatory factor 3 (IRF3) to chromosome 19q13.3-13.4 by an intragenic polymorphic marker. Ann Hum Genet. 1998 May;62(Pt 3):231-4. doi: 10.1046/j.1469-1809.1998.6230231.x.
Pubmed: 9803267
Au WC, Moore PA, Lowther W, Juang YT, Pitha PM: Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11657-61. doi: 10.1073/pnas.92.25.11657.
Pubmed: 8524823
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Auron PE, Webb AC, Rosenwasser LJ, Mucci SF, Rich A, Wolff SM, Dinarello CA: Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7907-11. doi: 10.1073/pnas.81.24.7907.
Pubmed: 6083565
March CJ, Mosley B, Larsen A, Cerretti DP, Braedt G, Price V, Gillis S, Henney CS, Kronheim SR, Grabstein K, et al.: Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature. 1985 Jun 20-26;315(6021):641-7. doi: 10.1038/315641a0.
Pubmed: 2989698
Clark BD, Collins KL, Gandy MS, Webb AC, Auron PE: Genomic sequence for human prointerleukin 1 beta: possible evolution from a reverse transcribed prointerleukin 1 alpha gene. Nucleic Acids Res. 1986 Oct 24;14(20):7897-914. doi: 10.1093/nar/14.20.7897.
Pubmed: 3490654
Uze G, Lutfalla G, Gresser I: Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA. Cell. 1990 Jan 26;60(2):225-34. doi: 10.1016/0092-8674(90)90738-z.
Pubmed: 2153461
Lutfalla G, Gardiner K, Proudhon D, Vielh E, Uze G: The structure of the human interferon alpha/beta receptor gene. J Biol Chem. 1992 Feb 5;267(4):2802-9.
Pubmed: 1370833
Wagner TC, Velichko S, Vogel D, Rani MR, Leung S, Ransohoff RM, Stark GR, Perez HD, Croze E: Interferon signaling is dependent on specific tyrosines located within the intracellular domain of IFNAR2c. Expression of IFNAR2c tyrosine mutants in U5A cells. J Biol Chem. 2002 Jan 11;277(2):1493-9. doi: 10.1074/jbc.M108928200. Epub 2001 Oct 26.
Pubmed: 11682488
Novick D, Cohen B, Rubinstein M: The human interferon alpha/beta receptor: characterization and molecular cloning. Cell. 1994 May 6;77(3):391-400. doi: 10.1016/0092-8674(94)90154-6.
Pubmed: 8181059
Lutfalla G, Holland SJ, Cinato E, Monneron D, Reboul J, Rogers NC, Smith JM, Stark GR, Gardiner K, Mogensen KE, et al.: Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster. EMBO J. 1995 Oct 16;14(20):5100-8.
Pubmed: 7588638
Lawn RM, Adelman J, Franke AE, Houck CM, Gross M, Najarian R, Goeddel DV: Human fibroblast interferon gene lacks introns. Nucleic Acids Res. 1981 Mar 11;9(5):1045-52. doi: 10.1093/nar/9.5.1045.
Pubmed: 6164984
Ohno S, Taniguchi T: Structure of a chromosomal gene for human interferon beta. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5305-9. doi: 10.1073/pnas.78.9.5305.
Pubmed: 16593086
Taniguchi T, Ohno S, Fujii-Kuriyama Y, Muramatsu M: The nucleotide sequence of human fibroblast interferon cDNA. Gene. 1980 Jun;10(1):11-5. doi: 10.1016/0378-1119(80)90138-9.
Pubmed: 6157601
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings