Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Metabolism and Physiological Effects of Kynurenine
Homo sapiens
Disease Pathway
Created: 2022-08-26
Last Updated: 2023-10-25
Kynurenine is a uremic toxin that is produced when a person has uremia or renal failure. Kynurenine is naturally synthesized in the body from tryptophan. Tryptophan is consumed through foods such as milk, eggs, chicken, turkey, and oats. Tryptophan is then transported from the small intestine into the blood by an amino acid transport. In the blood it travels to the liver and is transported into a hepatocyte by an amino acid transporter.
The kynurenine pathway becomes dysregulated, potentially through over-stimulation by interferon gamma (IFNG). This hyperstimulation leads to large reductions in tryptophan levels as the indole dioxygenase (IDO) enzyme becomes more active. IDO activation results in the generation (from tryptophan) of large amounts of kynurenine (and its other metabolites) through a self-stimulating autocrine process. Kynurenine binds to the arylhydrocarbon receptor (AhR) found in most immune cells [5-7]. In addition to increased kynurenine production via IDO mediated synthesis, hyopalbuminemia can also lead to the release of bound kynurenine (and other immunosuppressive LysoPCs) into the bloodstream to fuel this kynurenine-mediated process. Regardless of the source of kynurenine, the kynurenine-bound AhR will migrate to the nucleus to bind to NF-kB which leads to more production of the IDO enzyme, which leads to more production of kynureneine and more loss of tryptophan. Kynurenine then enters the blood via a liver organic anion transporter such as solute carrier family 22 member 9. Kynurenine is shown to activate aryl hydrocarbon receptors that can lead to renal impairment, apoptosis, and kynurenine has also been found to disrupt the electron transport chain and oxidative phosphorylation causing muscle atrophy.
References
Metabolism and Physiological Effects of Kynurenine References
Pawlak D, Pawlak K, Malyszko J, Mysliwiec M, Buczko W: Accumulation of toxic products degradation of kynurenine in hemodialyzed patients. Int Urol Nephrol. 2001;33(2):399-404. doi: 10.1023/a:1015238418500.
Pubmed: 12092667
Hubbard TD, Murray IA, Perdew GH: Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metab Dispos. 2015 Oct;43(10):1522-35. doi: 10.1124/dmd.115.064246. Epub 2015 Jun 3.
Pubmed: 26041783
Meyer, T. W., & Hostetter, T. H. (2012). Uremic solutes from colon microbes. Kidney international, 81(10), 949-954.
Van der Leek, A. P., Yanishevsky, Y., & Kozyrskyj, A. L. (2017). The kynurenine pathway as a novel link between allergy and the gut microbiome. Frontiers in immunology, 8, 1374.
Graboski, A. L., & Redinbo, M. R. (2020). Gut-derived protein-bound uremic toxins. Toxins, 12(9), 590.
Lim, Y. J., Sidor, N. A., Tonial, N. C., Che, A., & Urquhart, B. L. (2021). Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins, 13(2), 142.
Lob S, Konigsrainer A, Zieker D, Brucher BL, Rammensee HG, Opelz G, Terness P: IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother. 2009 Jan;58(1):153-7. doi: 10.1007/s00262-008-0513-6. Epub 2008 Apr 17.
Pubmed: 18418598
Lee YK, Lee HB, Shin DM, Kang MJ, Yi EC, Noh S, Lee J, Lee C, Min CK, Choi EY: Heme-binding-mediated negative regulation of the tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) by IDO2. Exp Mol Med. 2014 Nov 14;46:e121. doi: 10.1038/emm.2014.69.
Pubmed: 25394548
Dai W, Gupta SL: Molecular cloning, sequencing and expression of human interferon-gamma-inducible indoleamine 2,3-dioxygenase cDNA. Biochem Biophys Res Commun. 1990 Apr 16;168(1):1-8. doi: 10.1016/0006-291x(90)91666-g.
Pubmed: 2109605
Bechtel S, Rosenfelder H, Duda A, Schmidt CP, Ernst U, Wellenreuther R, Mehrle A, Schuster C, Bahr A, Blocker H, Heubner D, Hoerlein A, Michel G, Wedler H, Kohrer K, Ottenwalder B, Poustka A, Wiemann S, Schupp I: The full-ORF clone resource of the German cDNA Consortium. BMC Genomics. 2007 Oct 31;8:399. doi: 10.1186/1471-2164-8-399.
Pubmed: 17974005
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Itoh S, Kamataki T: Human Ah receptor cDNA: analysis for highly conserved sequences. Nucleic Acids Res. 1993 Jul 25;21(15):3578. doi: 10.1093/nar/21.15.3578.
Pubmed: 8393992
Dolwick KM, Schmidt JV, Carver LA, Swanson HI, Bradfield CA: Cloning and expression of a human Ah receptor cDNA. Mol Pharmacol. 1993 Nov;44(5):911-7.
Pubmed: 8246913
Ema M, Matsushita N, Sogawa K, Ariyama T, Inazawa J, Nemoto T, Ota M, Oshimura M, Fujii-Kuriyama Y: Human arylhydrocarbon receptor: functional expression and chromosomal assignment to 7p21. J Biochem. 1994 Oct;116(4):845-51. doi: 10.1093/oxfordjournals.jbchem.a124605.
Pubmed: 7883760
Kieran M, Blank V, Logeat F, Vandekerckhove J, Lottspeich F, Le Bail O, Urban MB, Kourilsky P, Baeuerle PA, Israel A: The DNA binding subunit of NF-kappa B is identical to factor KBF1 and homologous to the rel oncogene product. Cell. 1990 Sep 7;62(5):1007-18. doi: 10.1016/0092-8674(90)90275-j.
Pubmed: 2203531
Bours V, Villalobos J, Burd PR, Kelly K, Siebenlist U: Cloning of a mitogen-inducible gene encoding a kappa B DNA-binding protein with homology to the rel oncogene and to cell-cycle motifs. Nature. 1990 Nov 1;348(6296):76-80. doi: 10.1038/348076a0.
Pubmed: 2234062
Meyer R, Hatada EN, Hohmann HP, Haiker M, Bartsch C, Rothlisberger U, Lahm HW, Schlaeger EJ, van Loon AP, Scheidereit C: Cloning of the DNA-binding subunit of human nuclear factor kappa B: the level of its mRNA is strongly regulated by phorbol ester or tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):966-70. doi: 10.1073/pnas.88.3.966.
Pubmed: 1992489
Munakata T, Adachi N, Yokoyama N, Kuzuhara T, Horikoshi M: A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells. 2000 Mar;5(3):221-33.
Pubmed: 10759893
Sillje HH, Nigg EA: Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr Biol. 2001 Jul 10;11(13):1068-73. doi: 10.1016/s0960-9822(01)00298-6.
Pubmed: 11470414
Lai CH, Chou CY, Ch'ang LY, Liu CS, Lin W: Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000 May;10(5):703-13. doi: 10.1101/gr.10.5.703.
Pubmed: 10810093
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings