Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
3-Methylcrotonyl-CoA Carboxylase Deficiency Type I
Homo sapiens
Disease Pathway
Created: 2022-11-15
Last Updated: 2023-10-25
3-Methylcrotonyl-Coenzyme A Carboxylase Deficiency Type I also called 3-MCC Deficiency is a rare inborn error of metabolism (IEM) and is the result of defective pair of genes. More specifically defects in genes MCCC1 and MCCC2 cause 3-MCC Deficiency. 3-MCC has a very important role in protein metabolism in the body. In particular, the said enzyme is pivotal in one of the many steps which constitute the breakdown of leucine. Mutations in the aforementioned genes leads to a reduction in the activity of 3-MCC. As would naturally be expected, this causes the body to be unable to uptake and breakdown leucine properly. Consequently, this leads to the build up of toxic byproducts which are not processed as the breakdown of leucine is left incomplete. If these toxic byproducts manifest themselves in sufficiently high levels they can be very harmful, damaging the brain and nervous system. Symptoms include recurring episodes of vomiting and diarrhea, lethargy, hypotonia, seizures, and coma.
References
3-Methylcrotonyl-CoA Carboxylase Deficiency Type I References
Baumgartner MR: Molecular mechanism of dominant expression in 3-methylcrotonyl-CoA carboxylase deficiency. J Inherit Metab Dis. 2005;28(3):301-9. doi: 10.1007/s10545-005-7054-3.
Pubmed: 15868465
Baumgartner MR, Dantas MF, Suormala T, Almashanu S, Giunta C, Friebel D, Gebhardt B, Fowler B, Hoffmann GF, Baumgartner ER, Valle D: Isolated 3-methylcrotonyl-CoA carboxylase deficiency: evidence for an allele-specific dominant negative effect and responsiveness to biotin therapy. Am J Hum Genet. 2004 Nov;75(5):790-800. doi: 10.1086/425181. Epub 2004 Sep 9.
Pubmed: 15359379
Baumgartner MR, Almashanu S, Suormala T, Obie C, Cole RN, Packman S, Baumgartner ER, Valle D: The molecular basis of human 3-methylcrotonyl-CoA carboxylase deficiency. J Clin Invest. 2001 Feb;107(4):495-504. doi: 10.1172/JCI11948.
Pubmed: 11181649
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Wang YP, Qi ML, Li TT, Zhao YJ: Two novel mutations in the BCKDHB gene (R170H, Q346R) cause the classic form of maple syrup urine disease (MSUD). Gene. 2012 Apr 25;498(1):112-5. doi: 10.1016/j.gene.2012.01.082. Epub 2012 Feb 3.
Pubmed: 22326532
Nobukuni Y, Mitsubuchi H, Endo F, Akaboshi I, Asaka J, Matsuda I: Maple syrup urine disease. Complete primary structure of the E1 beta subunit of human branched chain alpha-ketoacid dehydrogenase complex deduced from the nucleotide sequence and a gene analysis of patients with this disease. J Clin Invest. 1990 Jul;86(1):242-7. doi: 10.1172/JCI114690.
Pubmed: 2365818
Chuang JL, Cox RP, Chuang DT: Maple syrup urine disease: the E1beta gene of human branched-chain alpha-ketoacid dehydrogenase complex has 11 rather than 10 exons, and the 3' UTR in one of the two E1beta mRNAs arises from intronic sequences. Am J Hum Genet. 1996 Jun;58(6):1373-7.
Pubmed: 8651316
Park HD, Lee DH, Hong YH, Kang DH, Lee YK, Song J, Lee SY, Kim JW, Ki CS, Lee YW: Three Korean patients with maple syrup urine disease: four novel mutations in the BCKDHA gene. Ann Clin Lab Sci. 2011 Spring;41(2):167-73.
Pubmed: 21844576
McKean MC, Winkeler KA, Danner DJ: Nucleotide sequence of the 5' end including the initiation codon of cDNA for the E1 alpha subunit of the human branched chain alpha-ketoacid dehydrogenase complex. Biochim Biophys Acta. 1992 Nov 15;1171(1):109-12. doi: 10.1016/0167-4781(92)90149-t.
Pubmed: 1420356
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Feigenbaum AS, Robinson BH: The structure of the human dihydrolipoamide dehydrogenase gene (DLD) and its upstream elements. Genomics. 1993 Aug;17(2):376-81. doi: 10.1006/geno.1993.1335.
Pubmed: 8406489
Otulakowski G, Robinson BH: Isolation and sequence determination of cDNA clones for porcine and human lipoamide dehydrogenase. Homology to other disulfide oxidoreductases. J Biol Chem. 1987 Dec 25;262(36):17313-8.
Pubmed: 3693355
Pons G, Raefsky-Estrin C, Carothers DJ, Pepin RA, Javed AA, Jesse BW, Ganapathi MK, Samols D, Patel MS: Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component human alpha-ketoacid dehydrogenase complexes. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1422-6. doi: 10.1073/pnas.85.5.1422.
Pubmed: 3278312
Wang SP, Robert MF, Gibson KM, Wanders RJ, Mitchell GA: 3-Hydroxy-3-methylglutaryl CoA lyase (HL): mouse and human HL gene (HMGCL) cloning and detection of large gene deletions in two unrelated HL-deficient patients. Genomics. 1996 Apr 1;33(1):99-104. doi: 10.1006/geno.1996.0164.
Pubmed: 8617516
Mitchell GA, Robert MF, Hruz PW, Wang S, Fontaine G, Behnke CE, Mende-Mueller LM, Schappert K, Lee C, Gibson KM, Miziorko HM, et al.: 3-Hydroxy-3-methylglutaryl coenzyme A lyase (HL). Cloning of human and chicken liver HL cDNAs and characterization of a mutation causing human HL deficiency. J Biol Chem. 1993 Feb 25;268(6):4376-81.
Pubmed: 8440722
Schuldiner O, Eden A, Ben-Yosef T, Yanuka O, Simchen G, Benvenisty N: ECA39, a conserved gene regulated by c-Myc in mice, is involved in G1/S cell cycle regulation in yeast. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7143-8. doi: 10.1073/pnas.93.14.7143.
Pubmed: 8692959
Bechtel S, Rosenfelder H, Duda A, Schmidt CP, Ernst U, Wellenreuther R, Mehrle A, Schuster C, Bahr A, Blocker H, Heubner D, Hoerlein A, Michel G, Wedler H, Kohrer K, Ottenwalder B, Poustka A, Wiemann S, Schupp I: The full-ORF clone resource of the German cDNA Consortium. BMC Genomics. 2007 Oct 31;8:399. doi: 10.1186/1471-2164-8-399.
Pubmed: 17974005
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings