Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Finerenone Action Pathway
Homo sapiens
Drug Action Pathway
Created: 2023-05-10
Last Updated: 2023-10-25
Finerenone, under the brand name Kerendia, is indicated to lower the risk of eGFR decline, end stage kidney disease, cardiovascular death, heart attack, and hospitalization for heart failure in chronic kidney disease associated with type 2 diabetes. Finerenone is an oral drug that has been shown to help in reducing inflammation, fibrosis, and improving proteinuria, along with severe congestive heart failure and diabetic nephropathy. Finerenone is the only non steroidal MRA to be FDA approved, and it more selective and longer lasting compared to other MRAs, providing a dose dependent relationship over older MRAs. Finerenone is a non steroidal, or specific, mineralocorticoid receptor antagonist (MRA) that minimizes adverse effects such as hyperkalemia compared to non specific/steroidal MRAs. Binding of Finerenone to mineralocorticoid receptors (MRs) prevents the binding of coactivators of the MRs such as aldosterone, cortisol, and 11-deoxycorticosterone; preventing receptor activation. Aldosterone is a mineralocorticoid hormone responsible for contributing to the regulation of blood pressure, sodium reabsorption, and potassium excretion and therefore, plays a role in blood pressure via the RAAS pathway. In the principal cells of the collecting duct, sodium and water reabsorption occur, along with potassium excretion. The sodium channel (ENaC) transports Na+ from the tubule lumen into the principal cells, then the NA+/K+ ATPase pumps the Na+ into the interstitium where it reabsorbed into the blood. K+ ions are pumped into the principal cell from the interstitium via the Na+/K+ ATPase, then the K+ channel transports K+ from the cell into the lumen where it is excreted in urine. Water reabsorption is linked to Na+ reabsorption and occurs via the aquaporins. Activation of the RAAS system leads to increased production of aldosterone, which is produced by the adrenal cortex in the zone glomerulosa. Aldosterone acts on receptors in collecting and distal tubules of the nephron causing increased reabsorption of Na+ and increased secretion of K+. Aldosterone binds to mineralocorticoid receptors in the cytosol of the principal cells in the collecting duct. The mineralocorticoid receptors undergo dimerization and activation and move into the nucleus where they undergo transcription. Protein is then synthesized in the cytosol. This effect on gene transcription leads to an upregulation of sodium channels in the apical membrane and Na+/K+ ATPase in the basolateral membrane, aiding an increase in Na+ and water reabsorption and K+ excretion. This change in ion concentrations leads to an increased effective circulating volume. Aldosterone can also stimulate MRs in the heart. Once Finerenone binds to the MR, there is a protrusion of MR helix 12 which disables MR activation, therefore blocking the binding of aldosterone. By blocking the binding of aldosterone, the RAAS system. This prevents the aldosterone effects on gene transcription, therefore, there is a decrease in Na+ channels and Na+/K+ ATPase in the membrane. Sodium reabsorption decreases, the concentration of Na+ in the lumen becomes high and as a result, water reabsorption also decreases. The effects on Na+/K+ ATPase results in reduced K+ excretion. This effect of Finerenone is important for treating conditions like hypertension because the increased water excretion in urine leads to decreased blood plasma volume, lowering blood pressure. Finerenone has also been shown to be a therapeutic agent for patients with albuminuria, and to be responsible for decreased BNP levels. BNP is a hormone secreted by cardiomyocytes in heart ventricles in response to increased blood volume. Side effects of using oral Finerenone may include confusion, nausea and vomiting, nervousness, irregular heartbeat, stomach pain, and/or numbness/tingling in the hands, feet, and lips.
References
Finerenone Pathway References
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Gerisch M, Heinig R, Engelen A, Lang D, Kolkhof P, Radtke M, Platzek J, Lovis K, Rohde G, Schwarz T: Biotransformation of Finerenone, a Novel Nonsteroidal Mineralocorticoid Receptor Antagonist, in Dogs, Rats, and Humans, In Vivo and In Vitro. Drug Metab Dispos. 2018 Nov;46(11):1546-1555. doi: 10.1124/dmd.118.083337. Epub 2018 Aug 31.
Pubmed: 30171161
Epstein M: Aldosterone and Mineralocorticoid Receptor Signaling as Determinants of Cardiovascular and Renal Injury: From Hans Selye to the Present. Am J Nephrol. 2021;52(3):209-216. doi: 10.1159/000515622. Epub 2021 Apr 15.
Pubmed: 33857953
Rico-Mesa JS, White A, Ahmadian-Tehrani A, Anderson AS: Mineralocorticoid Receptor Antagonists: a Comprehensive Review of Finerenone. Curr Cardiol Rep. 2020 Sep 10;22(11):140. doi: 10.1007/s11886-020-01399-7.
Pubmed: 32910349
Voilley N, Lingueglia E, Champigny G, Mattei MG, Waldmann R, Lazdunski M, Barbry P: The lung amiloride-sensitive Na+ channel: biophysical properties, pharmacology, ontogenesis, and molecular cloning. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):247-51. doi: 10.1073/pnas.91.1.247.
Pubmed: 8278374
McDonald FJ, Snyder PM, McCray PB Jr, Welsh MJ: Cloning, expression, and tissue distribution of a human amiloride-sensitive Na+ channel. Am J Physiol. 1994 Jun;266(6 Pt 1):L728-34. doi: 10.1152/ajplung.1994.266.6.L728.
Pubmed: 8023962
Ludwig M, Bolkenius U, Wickert L, Marynen P, Bidlingmaier F: Structural organisation of the gene encoding the alpha-subunit of the human amiloride-sensitive epithelial sodium channel. Hum Genet. 1998 May;102(5):576-81. doi: 10.1007/s004390050743.
Pubmed: 9654208
Voilley N, Bassilana F, Mignon C, Merscher S, Mattei MG, Carle GF, Lazdunski M, Barbry P: Cloning, chromosomal localization, and physical linkage of the beta and gamma subunits (SCNN1B and SCNN1G) of the human epithelial amiloride-sensitive sodium channel. Genomics. 1995 Aug 10;28(3):560-5. doi: 10.1006/geno.1995.1188.
Pubmed: 7490094
McDonald FJ, Price MP, Snyder PM, Welsh MJ: Cloning and expression of the beta- and gamma-subunits of the human epithelial sodium channel. Am J Physiol. 1995 May;268(5 Pt 1):C1157-63. doi: 10.1152/ajpcell.1995.268.5.C1157.
Pubmed: 7762608
Saxena A, Hanukoglu I, Strautnieks SS, Thompson RJ, Gardiner RM, Hanukoglu A: Gene structure of the human amiloride-sensitive epithelial sodium channel beta subunit. Biochem Biophys Res Commun. 1998 Nov 9;252(1):208-13. doi: 10.1006/bbrc.1998.9625.
Pubmed: 9813171
Waldmann R, Champigny G, Bassilana F, Voilley N, Lazdunski M: Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel. J Biol Chem. 1995 Nov 17;270(46):27411-4. doi: 10.1074/jbc.270.46.27411.
Pubmed: 7499195
Ji HL, Su XF, Kedar S, Li J, Barbry P, Smith PR, Matalon S, Benos DJ: Delta-subunit confers novel biophysical features to alpha beta gamma-human epithelial sodium channel (ENaC) via a physical interaction. J Biol Chem. 2006 Mar 24;281(12):8233-41. doi: 10.1074/jbc.M512293200. Epub 2006 Jan 19.
Pubmed: 16423824
Bangel-Ruland N, Sobczak K, Christmann T, Kentrup D, Langhorst H, Kusche-Vihrog K, Weber WM: Characterization of the epithelial sodium channel delta-subunit in human nasal epithelium. Am J Respir Cell Mol Biol. 2010 Apr;42(4):498-505. doi: 10.1165/rcmb.2009-0053OC. Epub 2009 Jun 11.
Pubmed: 19520916
Saxena A, Hanukoglu I, Saxena D, Thompson RJ, Gardiner RM, Hanukoglu A: Novel mutations responsible for autosomal recessive multisystem pseudohypoaldosteronism and sequence variants in epithelial sodium channel alpha-, beta-, and gamma-subunit genes. J Clin Endocrinol Metab. 2002 Jul;87(7):3344-50. doi: 10.1210/jcem.87.7.8674.
Pubmed: 12107247
Kawakami K, Ohta T, Nojima H, Nagano K: Primary structure of the alpha-subunit of human Na,K-ATPase deduced from cDNA sequence. J Biochem. 1986 Aug;100(2):389-97. doi: 10.1093/oxfordjournals.jbchem.a121726.
Pubmed: 2430951
Ruiz A, Bhat SP, Bok D: Characterization and quantification of full-length and truncated Na,K-ATPase alpha 1 and beta 1 RNA transcripts expressed in human retinal pigment epithelium. Gene. 1995 Apr 3;155(2):179-84. doi: 10.1016/0378-1119(94)00812-7.
Pubmed: 7536695
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Vanmolkot KR, Kors EE, Hottenga JJ, Terwindt GM, Haan J, Hoefnagels WA, Black DF, Sandkuijl LA, Frants RR, Ferrari MD, van den Maagdenberg AM: Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions. Ann Neurol. 2003 Sep;54(3):360-6. doi: 10.1002/ana.10674.
Pubmed: 12953268
De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L, Ballabio A, Aridon P, Casari G: Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet. 2003 Feb;33(2):192-6. doi: 10.1038/ng1081. Epub 2003 Jan 21.
Pubmed: 12539047
Swoboda KJ, Kanavakis E, Xaidara A, Johnson JE, Leppert MF, Schlesinger-Massart MB, Ptacek LJ, Silver K, Youroukos S: Alternating hemiplegia of childhood or familial hemiplegic migraine? A novel ATP1A2 mutation. Ann Neurol. 2004 Jun;55(6):884-7. doi: 10.1002/ana.20134.
Pubmed: 15174025
Heinzen EL, Swoboda KJ, Hitomi Y, Gurrieri F, Nicole S, de Vries B, Tiziano FD, Fontaine B, Walley NM, Heavin S, Panagiotakaki E, Fiori S, Abiusi E, Di Pietro L, Sweney MT, Newcomb TM, Viollet L, Huff C, Jorde LB, Reyna SP, Murphy KJ, Shianna KV, Gumbs CE, Little L, Silver K, Ptacek LJ, Haan J, Ferrari MD, Bye AM, Herkes GK, Whitelaw CM, Webb D, Lynch BJ, Uldall P, King MD, Scheffer IE, Neri G, Arzimanoglou A, van den Maagdenberg AM, Sisodiya SM, Mikati MA, Goldstein DB: De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat Genet. 2012 Sep;44(9):1030-4. doi: 10.1038/ng.2358. Epub 2012 Jul 29.
Pubmed: 22842232
Ishii A, Saito Y, Mitsui J, Ishiura H, Yoshimura J, Arai H, Yamashita S, Kimura S, Oguni H, Morishita S, Tsuji S, Sasaki M, Hirose S: Identification of ATP1A3 mutations by exome sequencing as the cause of alternating hemiplegia of childhood in Japanese patients. PLoS One. 2013;8(2):e56120. doi: 10.1371/journal.pone.0056120. Epub 2013 Feb 8.
Pubmed: 23409136
Demos MK, van Karnebeek CD, Ross CJ, Adam S, Shen Y, Zhan SH, Shyr C, Horvath G, Suri M, Fryer A, Jones SJ, Friedman JM: A novel recurrent mutation in ATP1A3 causes CAPOS syndrome. Orphanet J Rare Dis. 2014 Jan 28;9:15. doi: 10.1186/1750-1172-9-15.
Pubmed: 24468074
Keryanov S, Gardner KL: Physical mapping and characterization of the human Na,K-ATPase isoform, ATP1A4. Gene. 2002 Jun 12;292(1-2):151-66. doi: 10.1016/s0378-1119(02)00647-9.
Pubmed: 12119109
Hlivko JT, Chakraborty S, Hlivko TJ, Sengupta A, James PF: The human Na,K-ATPase alpha 4 isoform is a ouabain-sensitive alpha isoform that is expressed in sperm. Mol Reprod Dev. 2006 Jan;73(1):101-15. doi: 10.1002/mrd.20383.
Pubmed: 16175638
Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E: The DNA sequence and biological annotation of human chromosome 1. Nature. 2006 May 18;441(7091):315-21. doi: 10.1038/nature04727.
Pubmed: 16710414
Kawakami K, Nojima H, Ohta T, Nagano K: Molecular cloning and sequence analysis of human Na,K-ATPase beta-subunit. Nucleic Acids Res. 1986 Apr 11;14(7):2833-44. doi: 10.1093/nar/14.7.2833.
Pubmed: 3008098
Lane LK, Shull MM, Whitmer KR, Lingrel JB: Characterization of two genes for the human Na,K-ATPase beta subunit. Genomics. 1989 Oct;5(3):445-53.
Pubmed: 2559024
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings