Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Interferon alfa-2b Action Pathway
Homo sapiens
Drug Action Pathway
Created: 2023-05-15
Last Updated: 2023-10-25
Interferon alfa-2b, also known as Intron A, is a recombinant human interferon used to treat hepatitis B and C infections. It can also treat genital warts, hairy cell leukemia, follicular lymphoma, malignant melanoma, and AIDs-related Kaposi's sarcoma. Interferon alpha binds to type 1 interferon receptors, called IFNAR1 and IFNAR2c, which upon dimerization activate two Jak tyrosine kinases (Jak1 and Tyk2). These transphosphorylate themselves and phosphorylate the receptors. This receptor complex also phosphorylates STAT3 homodimers. The IFNAR complex phosphorylates STAT5 which binds with Crk-like protein (CRKL). This activates the transcription of gamma-activated sequence (GAS) elements, which activates an inflammatory response and immunoregulation. The main pathway of IFNAR1 and IFNAR2 is through the phosphorylation of STAT1 and STAT2. Together with interferon regulatory factor (IRF9) they form the interferon-stimulated gene factor 3 (ISGF3). The ISGF3 translocates to the nucleus and initiates the transcription of the Interferon-sensitive response element (ISRE). This leads to an antiviral response, immunoregulation, antigen presentation, and checkpoint proteins. The ISRE genes also activate IFN-regulated genes. These along with lipopolysaccharides or foreign pathogens activates interferon Regulatory Factor 7 (IRF7). IRF7 is phosphorylated and bound with nuclear factor kappa B (NFKB). This causes the induction of type 1 INFs, which further activates the pathway. IFNAR1 and IFNAR2 signal through TYK2 and JAK1 to also trigger the activation of the NFKB pathway through phosphorylated STAT3, phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and TNF receptor-associated factors (TRAFs). They act through IKKa and IKKb to drive NFKB induction of genes associated with survival signals, antigen processing and presentation, and proliferation. This drug is administered as a solution that can be intralesional, intramuscular, intravenous, or subcutaneous.
References
Interferon alfa-2b Pathway References
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. doi: 10.1093/nar/30.1.412.
Pubmed: 11752352
Eid P, Tovey MG: Characterization of a domain of a human type I interferon receptor protein involved in ligand binding. J Interferon Cytokine Res. 1995 Mar;15(3):205-11. doi: 10.1089/jir.1995.15.205.
Pubmed: 7584665
Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. doi: 10.1038/nrd2132.
Pubmed: 17016423
Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. doi: 10.1038/nrd2199.
Pubmed: 17139284
Pietra LD, Bressan A, Pezzotti AR, Serlupi-Crescenzi O: Highly conserved amino-acid sequence between murine STAT3 and a revised human STAT3 sequence. Gene. 1998 Jun 15;213(1-2):119-24. doi: 10.1016/s0378-1119(98)00185-1.
Pubmed: 9630560
Tsai YT, Su YH, Fang SS, Huang TN, Qiu Y, Jou YS, Shih HM, Kung HJ, Chen RH: Etk, a Btk family tyrosine kinase, mediates cellular transformation by linking Src to STAT3 activation. Mol Cell Biol. 2000 Mar;20(6):2043-54. doi: 10.1128/mcb.20.6.2043-2054.2000.
Pubmed: 10688651
Yamamoto T, Sekine Y, Kashima K, Kubota A, Sato N, Aoki N, Matsuda T: The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem Biophys Res Commun. 2002 Oct 4;297(4):811-7. doi: 10.1016/s0006-291x(02)02291-x.
Pubmed: 12359225
Williams NK, Bamert RS, Patel O, Wang C, Walden PM, Wilks AF, Fantino E, Rossjohn J, Lucet IS: Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J Mol Biol. 2009 Mar 20;387(1):219-32. doi: 10.1016/j.jmb.2009.01.041. Epub 2009 Jan 29.
Pubmed: 19361440
Wilks AF, Harpur AG, Kurban RR, Ralph SJ, Zurcher G, Ziemiecki A: Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol. 1991 Apr;11(4):2057-65. doi: 10.1128/mcb.11.4.2057.
Pubmed: 1848670
Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E: The DNA sequence and biological annotation of human chromosome 1. Nature. 2006 May 18;441(7091):315-21. doi: 10.1038/nature04727.
Pubmed: 16710414
Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P, Monpoux F, Van Rompaey L, Baens M, Van den Berghe H, Marynen P: Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood. 1997 Oct 1;90(7):2535-40.
Pubmed: 9326218
Reiter A, Walz C, Watmore A, Schoch C, Blau I, Schlegelberger B, Berger U, Telford N, Aruliah S, Yin JA, Vanstraelen D, Barker HF, Taylor PC, O'Driscoll A, Benedetti F, Rudolph C, Kolb HJ, Hochhaus A, Hehlmann R, Chase A, Cross NC: The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res. 2005 Apr 1;65(7):2662-7. doi: 10.1158/0008-5472.CAN-04-4263.
Pubmed: 15805263
Adelaide J, Perot C, Gelsi-Boyer V, Pautas C, Murati A, Copie-Bergman C, Imbert M, Chaffanet M, Birnbaum D, Mozziconacci MJ: A t(8;9) translocation with PCM1-JAK2 fusion in a patient with T-cell lymphoma. Leukemia. 2006 Mar;20(3):536-7. doi: 10.1038/sj.leu.2404104.
Pubmed: 16424865
Rogers RS, Horvath CM, Matunis MJ: SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J Biol Chem. 2003 Aug 8;278(32):30091-7. doi: 10.1074/jbc.M301344200. Epub 2003 May 22.
Pubmed: 12764129
Schindler C, Fu XY, Improta T, Aebersold R, Darnell JE Jr: Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7836-9. doi: 10.1073/pnas.89.16.7836.
Pubmed: 1502203
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Leung S, Qureshi SA, Kerr IM, Darnell JE Jr, Stark GR: Role of STAT2 in the alpha interferon signaling pathway. Mol Cell Biol. 1995 Mar;15(3):1312-7. doi: 10.1128/mcb.15.3.1312.
Pubmed: 7532278
Li X, Leung S, Kerr IM, Stark GR: Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling. Mol Cell Biol. 1997 Apr;17(4):2048-56. doi: 10.1128/mcb.17.4.2048.
Pubmed: 9121453
Precious B, Childs K, Fitzpatrick-Swallow V, Goodbourn S, Randall RE: Simian virus 5 V protein acts as an adaptor, linking DDB1 to STAT2, to facilitate the ubiquitination of STAT1. J Virol. 2005 Nov;79(21):13434-41. doi: 10.1128/JVI.79.21.13434-13441.2005.
Pubmed: 16227264
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings