Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Methylnaltrexone Opioid Antagonist Action Pathway
Homo sapiens
Drug Action Pathway
Created: 2023-06-16
Last Updated: 2023-11-27
Methylnaltrexone, also known as Relistor, is a μ-opioid antagonist. This drug is used in the treatment of opioid-induced constipation in palliative patients that are not responding to laxative therapy. This drug acts on the gastrointestinal tract to decrease opioid-induced constipation without producing analgesic effects or withdrawal symptoms as it does not cross the blood-brain barrier. Methylnaltrexone is given as a subcutaneous injection or as an oral tablet. Methylnaltrexone is a quaternary derivative of naltrexone. The most common (>5%) adverse reactions reported with methylnaltrexone bromide are abdominal pain, flatulence, nausea, dizziness, diarrhea, and hyperhidrosis.
Methylnaltrexone inhibits the mu-opioid receptor located on neurons in the intestine. This inhibits the exchange of GTP for GDP which is required to activate the G-protein complex. This prevents the Gi subunit of the mu opioid receptor from inhibiting adenylate cyclase, which can therefore continue to catalyze ATP into cAMP. cAMP increases the excitability in spinal cord pain transmission neurons which allows the patient to feel pain rather than the analgesic effects of opioids. The inhibition of Mu-type opioid receptors also prevents the Gi subunit of the mu opioid receptor from activating the inwardly rectifying potassium channel increasing K+ conductance which would cause hyperpolarization. Methylnaltrexone also prevents the gamma subunit of the mu opioid receptor from inhibiting the N-type calcium channels on the neuron. This allows calcium to enter the neuron and depolarize. The inhibition of mu-opioid receptors prevents hyperpolarization in the neuron, allowing it to fire at a normal rate. The neuron is able to depolarize and the high concentration of calcium releases acetylcholine and nitric acid into the neuromuscular junction. Acetylcholine binds to nicotinic acetylcholine receptors on the smooth muscles of the intestines, causing muscle contraction. The nitric oxide diffuses into the myocyte and causes muscle relaxation. The rythmic action of the neurotransmitters creates the peristalsis and the good GI transit.
References
Methylnaltrexone Opioid Antagonist Pathway References
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Thomas J: Opioid-induced bowel dysfunction. J Pain Symptom Manage. 2008 Jan;35(1):103-13. doi: 10.1016/j.jpainsymman.2007.01.017. Epub 2007 Nov 5.
Pubmed: 17981003
Rotshteyn Y, Boyd TA, Yuan CS: Methylnaltrexone bromide: research update of pharmacokinetics following parenteral administration. Expert Opin Drug Metab Toxicol. 2011 Feb;7(2):227-35. doi: 10.1517/17425255.2011.549824. Epub 2011 Jan 11.
Pubmed: 21222554
Chandrasekaran A, Tong Z, Li H, Erve JC, DeMaio W, Goljer I, McConnell O, Rotshteyn Y, Hultin T, Talaat R, Scatina J: Metabolism of intravenous methylnaltrexone in mice, rats, dogs, and humans. Drug Metab Dispos. 2010 Apr;38(4):606-16. doi: 10.1124/dmd.109.031179. Epub 2010 Jan 6.
Pubmed: 20053817
Yuan CS: Methylnaltrexone mechanisms of action and effects on opioid bowel dysfunction and other opioid adverse effects. Ann Pharmacother. 2007 Jun;41(6):984-93. doi: 10.1345/aph.1K009. Epub 2007 May 15.
Pubmed: 17504835
Costa M, Brookes SJH, Hennig GWAnatomy and physiology of the enteric nervous systemGut 2000;47:iv15-iv19.
Galligan JJ, Sternini C: Insights into the Role of Opioid Receptors in the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb Exp Pharmacol. 2017;239:363-378. doi: 10.1007/164_2016_116.
Pubmed: 28204957
Badal S, Turfus S, Rajnarayanan R, Wilson-Clarke C, Sandiford SL: Analysis of natural product regulation of opioid receptors in the treatment of human disease. Pharmacol Ther. 2018 Apr;184:51-80. doi: 10.1016/j.pharmthera.2017.10.021. Epub 2017 Oct 31.
Pubmed: 29097308
Toubia T, Khalife T: The Endogenous Opioid System: Role and Dysfunction Caused by Opioid Therapy. Clin Obstet Gynecol. 2019 Mar;62(1):3-10. doi: 10.1097/GRF.0000000000000409.
Pubmed: 30398979
Bruchas MR, Roth BL: New Technologies for Elucidating Opioid Receptor Function. Trends Pharmacol Sci. 2016 Apr;37(4):279-289. doi: 10.1016/j.tips.2016.01.001. Epub 2016 Jan 29.
Pubmed: 26833118
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Schmutz J, Martin J, Terry A, Couronne O, Grimwood J, Lowry S, Gordon LA, Scott D, Xie G, Huang W, Hellsten U, Tran-Gyamfi M, She X, Prabhakar S, Aerts A, Altherr M, Bajorek E, Black S, Branscomb E, Caoile C, Challacombe JF, Chan YM, Denys M, Detter JC, Escobar J, Flowers D, Fotopulos D, Glavina T, Gomez M, Gonzales E, Goodstein D, Grigoriev I, Groza M, Hammon N, Hawkins T, Haydu L, Israni S, Jett J, Kadner K, Kimball H, Kobayashi A, Lopez F, Lou Y, Martinez D, Medina C, Morgan J, Nandkeshwar R, Noonan JP, Pitluck S, Pollard M, Predki P, Priest J, Ramirez L, Retterer J, Rodriguez A, Rogers S, Salamov A, Salazar A, Thayer N, Tice H, Tsai M, Ustaszewska A, Vo N, Wheeler J, Wu K, Yang J, Dickson M, Cheng JF, Eichler EE, Olsen A, Pennacchio LA, Rokhsar DS, Richardson P, Lucas SM, Myers RM, Rubin EM: The DNA sequence and comparative analysis of human chromosome 5. Nature. 2004 Sep 16;431(7006):268-74. doi: 10.1038/nature02919.
Pubmed: 15372022
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Kurabayashi M, Komuro I, Tsuchimochi H, Takaku F, Yazaki Y: Molecular cloning and characterization of human atrial and ventricular myosin alkali light chain cDNA clones. J Biol Chem. 1988 Sep 25;263(27):13930-6.
Pubmed: 3417683
Hoffmann E, Shi QW, Floroff M, Mickle DA, Wu TW, Olley PM, Jackowski G: Molecular cloning and complete nucleotide sequence of a human ventricular myosin light chain 1. Nucleic Acids Res. 1988 Mar 25;16(5):2353. doi: 10.1093/nar/16.5.2353.
Pubmed: 3357795
Fodor WL, Darras B, Seharaseyon J, Falkenthal S, Francke U, Vanin EF: Human ventricular/slow twitch myosin alkali light chain gene characterization, sequence, and chromosomal location. J Biol Chem. 1989 Feb 5;264(4):2143-9.
Pubmed: 2789520
Williams ME, Brust PF, Feldman DH, Patthi S, Simerson S, Maroufi A, McCue AF, Velicelebi G, Ellis SB, Harpold MM: Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. Science. 1992 Jul 17;257(5068):389-95. doi: 10.1126/science.1321501.
Pubmed: 1321501
Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blocker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J, Dunham I: DNA sequence and analysis of human chromosome 9. Nature. 2004 May 27;429(6990):369-74. doi: 10.1038/nature02465.
Pubmed: 15164053
Kim DS, Jung HH, Park SH, Chin H: Isolation and characterization of the 5'-upstream region of the human N-type calcium channel alpha1B subunit gene. Chromosomal localization and promoter analysis. J Biol Chem. 1997 Feb 21;272(8):5098-104. doi: 10.1074/jbc.272.8.5098.
Pubmed: 9030575
Klugbauer N, Lacinova L, Marais E, Hobom M, Hofmann F: Molecular diversity of the calcium channel alpha2delta subunit. J Neurosci. 1999 Jan 15;19(2):684-91.
Pubmed: 9880589
Gao B, Sekido Y, Maximov A, Saad M, Forgacs E, Latif F, Wei MH, Lerman M, Lee JH, Perez-Reyes E, Bezprozvanny I, Minna JD: Functional properties of a new voltage-dependent calcium channel alpha(2)delta auxiliary subunit gene (CACNA2D2). J Biol Chem. 2000 Apr 21;275(16):12237-42. doi: 10.1074/jbc.275.16.12237.
Pubmed: 10766861
Hobom M, Dai S, Marais E, Lacinova L, Hofmann F, Klugbauer N: Neuronal distribution and functional characterization of the calcium channel alpha2delta-2 subunit. Eur J Neurosci. 2000 Apr;12(4):1217-26. doi: 10.1046/j.1460-9568.2000.01009.x.
Pubmed: 10762351
Escayg A, Jones JM, Kearney JA, Hitchcock PF, Meisler MH: Calcium channel beta 4 (CACNB4): human ortholog of the mouse epilepsy gene lethargic. Genomics. 1998 May 15;50(1):14-22. doi: 10.1006/geno.1998.5311.
Pubmed: 9628818
Escayg A, De Waard M, Lee DD, Bichet D, Wolf P, Mayer T, Johnston J, Baloh R, Sander T, Meisler MH: Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet. 2000 May;66(5):1531-9. doi: 10.1086/302909. Epub 2000 Apr 4.
Pubmed: 10762541
Taviaux S, Williams ME, Harpold MM, Nargeot J, Lory P: Assignment of human genes for beta 2 and beta 4 subunits of voltage-dependent Ca2+ channels to chromosomes 10p12 and 2q22-q23. Hum Genet. 1997 Aug;100(2):151-4. doi: 10.1007/pl00008704.
Pubmed: 9254841
Powers PA, Liu S, Hogan K, Gregg RG: Skeletal muscle and brain isoforms of a beta-subunit of human voltage-dependent calcium channels are encoded by a single gene. J Biol Chem. 1992 Nov 15;267(32):22967-72.
Pubmed: 1385409
Williams ME, Feldman DH, McCue AF, Brenner R, Velicelebi G, Ellis SB, Harpold MM: Structure and functional expression of alpha 1, alpha 2, and beta subunits of a novel human neuronal calcium channel subtype. Neuron. 1992 Jan;8(1):71-84. doi: 10.1016/0896-6273(92)90109-q.
Pubmed: 1309651
Collin T, Wang JJ, Nargeot J, Schwartz A: Molecular cloning of three isoforms of the L-type voltage-dependent calcium channel beta subunit from normal human heart. Circ Res. 1993 Jun;72(6):1337-44. doi: 10.1161/01.res.72.6.1337.
Pubmed: 7916667
Chan KW, Langan MN, Sui JL, Kozak JA, Pabon A, Ladias JA, Logothetis DE: A recombinant inwardly rectifying potassium channel coupled to GTP-binding proteins. J Gen Physiol. 1996 Mar;107(3):381-97. doi: 10.1085/jgp.107.3.381.
Pubmed: 8868049
Schoots O, Yue KT, MacDonald JF, Hampson DR, Nobrega JN, Dixon LM, Van Tol HH: Cloning of a G protein-activated inwardly rectifying potassium channel from human cerebellum. Brain Res Mol Brain Res. 1996 Jul;39(1-2):23-30. doi: 10.1016/0169-328x(95)00349-w.
Pubmed: 8804710
Oki K, Plonczynski MW, Luis Lam M, Gomez-Sanchez EP, Gomez-Sanchez CE: Potassium channel mutant KCNJ5 T158A expression in HAC-15 cells increases aldosterone synthesis. Endocrinology. 2012 Apr;153(4):1774-82. doi: 10.1210/en.2011-1733. Epub 2012 Feb 7.
Pubmed: 22315453
Mulatero P, Tauber P, Zennaro MC, Monticone S, Lang K, Beuschlein F, Fischer E, Tizzani D, Pallauf A, Viola A, Amar L, Williams TA, Strom TM, Graf E, Bandulik S, Penton D, Plouin PF, Warth R, Allolio B, Jeunemaitre X, Veglio F, Reincke M: KCNJ5 mutations in European families with nonglucocorticoid remediable familial hyperaldosteronism. Hypertension. 2012 Feb;59(2):235-40. doi: 10.1161/HYPERTENSIONAHA.111.183996. Epub 2011 Dec 27.
Pubmed: 22203740
Boulkroun S, Beuschlein F, Rossi GP, Golib-Dzib JF, Fischer E, Amar L, Mulatero P, Samson-Couterie B, Hahner S, Quinkler M, Fallo F, Letizia C, Allolio B, Ceolotto G, Cicala MV, Lang K, Lefebvre H, Lenzini L, Maniero C, Monticone S, Perrocheau M, Pilon C, Plouin PF, Rayes N, Seccia TM, Veglio F, Williams TA, Zinnamosca L, Mantero F, Benecke A, Jeunemaitre X, Reincke M, Zennaro MC: Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism. Hypertension. 2012 Mar;59(3):592-8. doi: 10.1161/HYPERTENSIONAHA.111.186478. Epub 2012 Jan 23.
Pubmed: 22275527
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings