
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Ephedrine B1-Adrenergic Cardiac Muscle Constriction Action Pathway
Homo sapiens
Drug Action Pathway
Created: 2023-07-17
Last Updated: 2023-11-27
Ephedrine is an alpha and beta-adrenergic agonist indicated to treat hypotension under anesthesia, allergic conditions, bronchial asthma, and nasal congestion. It is administered as an intravenous injection, and can be found under the brand names Akovaz, Bronkaid, Corphedra, Emerphed, Primatene, and Rezipres. Ephedrine increases blood pressure by stimulating heart rate and cardiac output and variably increasing peripheral resistance. It causes bronchodilation due to the activation of beta-adrenergic receptors in the lungs. Ephedrine is a direct and indirect sympathomimetic amine. As a direct effect, ephedrine activates alpha-adrenergic and beta-adrenergic receptors. Ephedrine acts as an agonist of alpha-1, beta-1 and beta-2-adrenergic receptors. The stimulation of alpha-1-adrenergic receptors causes the constriction of veins and a rise in blood pressure, the stimulation of beta-1-adrenergic receptors increases cardiac chronotropy and inotropy, and the stimulation of beta-2-adrenergic receptors causes vasodilation and bronchodilation. Through the beta-1 adrenergic receptor, the heart is stimulated by ephedrine. The ephedrine activates Beta-1 adrenergic receptor which is coupled to the G-protein signalling cascade. Activation of the receptor activates the cascade which leads to activated protein kinase through activation of adenylate cyclase. Protein kinase activates calcium channels in the membrane, causing the channels to open and allow Ca2+ into the cell. This causes a high concentration of Ca2+ to be present in the cardiomyocyte which activates activates the ryanodine receptor on the sarcoplasmic reticulum. This transports more Ca2+ into the cytosol. The high concentration of Ca2+ binds to troponin to cause cardiac muscle contractions and therefore, an increased heart rate. Some side effects of using ephedrine may include blurred vision, irregular heartbeat, headache, and tiredness.
References
Ephedrine B1-Adrenergic Cardiac Muscle Constriction Pathway References
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Billington CK, Penn RB: Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res. 2003;4(1):2. Epub 2003 Mar 14.
Pubmed: 12648290
Pickup ME, May CS, Ssendagire R, Paterson JW: The pharmacokinetics of ephedrine after oral dosage in asthmatics receiving acute and chronic treatment. Br J Clin Pharmacol. 1976 Feb;3(1):123-34. doi: 10.1111/j.1365-2125.1976.tb00579.x.
Pubmed: 973934
Sakuntabhai A, Burge S, Monk S, Hovnanian A: Spectrum of novel ATP2A2 mutations in patients with Darier's disease. Hum Mol Genet. 1999 Sep;8(9):1611-9. doi: 10.1093/hmg/8.9.1611.
Pubmed: 10441323
Ruiz-Perez VL, Carter SA, Healy E, Todd C, Rees JL, Steijlen PM, Carmichael AJ, Lewis HM, Hohl D, Itin P, Vahlquist A, Gobello T, Mazzanti C, Reggazini R, Nagy G, Munro CS, Strachan T: ATP2A2 mutations in Darier's disease: variant cutaneous phenotypes are associated with missense mutations, but neuropsychiatric features are independent of mutation class. Hum Mol Genet. 1999 Sep;8(9):1621-30. doi: 10.1093/hmg/8.9.1621.
Pubmed: 10441324
Lytton J, MacLennan DH: Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem. 1988 Oct 15;263(29):15024-31.
Pubmed: 2844796
Komuro I, Wenninger KE, Philipson KD, Izumo S: Molecular cloning and characterization of the human cardiac Na+/Ca2+ exchanger cDNA. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4769-73. doi: 10.1073/pnas.89.10.4769.
Pubmed: 1374913
Van Eylen F, Bollen A, Herchuelz A: NCX1 Na/Ca exchanger splice variants in pancreatic islet cells. J Endocrinol. 2001 Mar;168(3):517-26. doi: 10.1677/joe.0.1680517.
Pubmed: 11241183
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Bagattin A, Veronese C, Rampazzo A, Danieli GA: Gene symbol: RYR2. Disease: Effort-induced polymorphic ventricular arrhythmias. Hum Genet. 2004 Mar;114(4):404.
Pubmed: 15046072
Tunwell RE, Wickenden C, Bertrand BM, Shevchenko VI, Walsh MB, Allen PD, Lai FA: The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J. 1996 Sep 1;318 ( Pt 2):477-87. doi: 10.1042/bj3180477.
Pubmed: 8809036
Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F, Larderet G, Brahmbhatt B, Brown K, Bauce B, Muriago M, Basso C, Thiene G, Danieli GA, Rampazzo A: Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet. 2001 Feb 1;10(3):189-94. doi: 10.1093/hmg/10.3.189.
Pubmed: 11159936
Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WH, Qiang B, Chan P, Shen Y, Wu X: Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol. 2003 Aug;54(2):239-43. doi: 10.1002/ana.10607.
Pubmed: 12891677
Heron SE, Phillips HA, Mulley JC, Mazarib A, Neufeld MY, Berkovic SF, Scheffer IE: Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann Neurol. 2004 Apr;55(4):595-6. doi: 10.1002/ana.20028.
Pubmed: 15048902
Daniil G, Fernandes-Rosa FL, Chemin J, Blesneac I, Beltrand J, Polak M, Jeunemaitre X, Boulkroun S, Amar L, Strom TM, Lory P, Zennaro MC: CACNA1H Mutations Are Associated With Different Forms of Primary Aldosteronism. EBioMedicine. 2016 Nov;13:225-236. doi: 10.1016/j.ebiom.2016.10.002. Epub 2016 Oct 4.
Pubmed: 27729216
Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP: Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5' CpG island in human tumors. Cancer Res. 1999 Sep 15;59(18):4535-41.
Pubmed: 10493502
Morino H, Matsuda Y, Muguruma K, Miyamoto R, Ohsawa R, Ohtake T, Otobe R, Watanabe M, Maruyama H, Hashimoto K, Kawakami H: A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Mol Brain. 2015 Dec 29;8:89. doi: 10.1186/s13041-015-0180-4.
Pubmed: 26715324
Chemin J, Siquier-Pernet K, Nicouleau M, Barcia G, Ahmad A, Medina-Cano D, Hanein S, Altin N, Hubert L, Bole-Feysot C, Fourage C, Nitschke P, Thevenon J, Rio M, Blanc P, Vidal C, Bahi-Buisson N, Desguerre I, Munnich A, Lyonnet S, Boddaert N, Fassi E, Shinawi M, Zimmerman H, Amiel J, Faivre L, Colleaux L, Lory P, Cantagrel V: De novo mutation screening in childhood-onset cerebellar atrophy identifies gain-of-function mutations in the CACNA1G calcium channel gene. Brain. 2018 Jul 1;141(7):1998-2013. doi: 10.1093/brain/awy145.
Pubmed: 29878067
Mische SM, Manjula BN, Fischetti VA: Relation of streptococcal M protein with human and rabbit tropomyosin: the complete amino acid sequence of human cardiac alpha tropomyosin, a highly conserved contractile protein. Biochem Biophys Res Commun. 1987 Feb 13;142(3):813-8. doi: 10.1016/0006-291x(87)91486-0.
Pubmed: 3548719
Lin CS, Leavitt J: Cloning and characterization of a cDNA encoding transformation-sensitive tropomyosin isoform 3 from tumorigenic human fibroblasts. Mol Cell Biol. 1988 Jan;8(1):160-8. doi: 10.1128/mcb.8.1.160.
Pubmed: 3336357
MacLeod AR, Gooding C: Human hTM alpha gene: expression in muscle and nonmuscle tissue. Mol Cell Biol. 1988 Jan;8(1):433-40. doi: 10.1128/mcb.8.1.433.
Pubmed: 3336363
Tajsharghi H, Ohlsson M, Lindberg C, Oldfors A: Congenital myopathy with nemaline rods and cap structures caused by a mutation in the beta-tropomyosin gene (TPM2). Arch Neurol. 2007 Sep;64(9):1334-8. doi: 10.1001/archneur.64.9.1334.
Pubmed: 17846275
Lehtokari VL, Ceuterick-de Groote C, de Jonghe P, Marttila M, Laing NG, Pelin K, Wallgren-Pettersson C: Cap disease caused by heterozygous deletion of the beta-tropomyosin gene TPM2. Neuromuscul Disord. 2007 Jun;17(6):433-42. doi: 10.1016/j.nmd.2007.02.015. Epub 2007 Apr 16.
Pubmed: 17434307
MacLeod AR, Houlker C, Reinach FC, Smillie LB, Talbot K, Modi G, Walsh FS: A muscle-type tropomyosin in human fibroblasts: evidence for expression by an alternative RNA splicing mechanism. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7835-9. doi: 10.1073/pnas.82.23.7835.
Pubmed: 3865200
Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK: Cloning of the cDNA for the human beta 1-adrenergic receptor. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7920-4. doi: 10.1073/pnas.84.22.7920.
Pubmed: 2825170
Moore JD, Mason DA, Green SA, Hsu J, Liggett SB: Racial differences in the frequencies of cardiac beta(1)-adrenergic receptor polymorphisms: analysis of c145A>G and c1165G>C. Hum Mutat. 1999 Sep 19;14(3):271. doi: 10.1002/(SICI)1098-1004(1999)14:3<271::AID-HUMU14>3.0.CO;2-Q.
Pubmed: 10477438
Deloukas P, Earthrowl ME, Grafham DV, Rubenfield M, French L, Steward CA, Sims SK, Jones MC, Searle S, Scott C, Howe K, Hunt SE, Andrews TD, Gilbert JG, Swarbreck D, Ashurst JL, Taylor A, Battles J, Bird CP, Ainscough R, Almeida JP, Ashwell RI, Ambrose KD, Babbage AK, Bagguley CL, Bailey J, Banerjee R, Bates K, Beasley H, Bray-Allen S, Brown AJ, Brown JY, Burford DC, Burrill W, Burton J, Cahill P, Camire D, Carter NP, Chapman JC, Clark SY, Clarke G, Clee CM, Clegg S, Corby N, Coulson A, Dhami P, Dutta I, Dunn M, Faulkner L, Frankish A, Frankland JA, Garner P, Garnett J, Gribble S, Griffiths C, Grocock R, Gustafson E, Hammond S, Harley JL, Hart E, Heath PD, Ho TP, Hopkins B, Horne J, Howden PJ, Huckle E, Hynds C, Johnson C, Johnson D, Kana A, Kay M, Kimberley AM, Kershaw JK, Kokkinaki M, Laird GK, Lawlor S, Lee HM, Leongamornlert DA, Laird G, Lloyd C, Lloyd DM, Loveland J, Lovell J, McLaren S, McLay KE, McMurray A, Mashreghi-Mohammadi M, Matthews L, Milne S, Nickerson T, Nguyen M, Overton-Larty E, Palmer SA, Pearce AV, Peck AI, Pelan S, Phillimore B, Porter K, Rice CM, Rogosin A, Ross MT, Sarafidou T, Sehra HK, Shownkeen R, Skuce CD, Smith M, Standring L, Sycamore N, Tester J, Thorpe A, Torcasso W, Tracey A, Tromans A, Tsolas J, Wall M, Walsh J, Wang H, Weinstock K, West AP, Willey DL, Whitehead SL, Wilming L, Wray PW, Young L, Chen Y, Lovering RC, Moschonas NK, Siebert R, Fechtel K, Bentley D, Durbin R, Hubbard T, Doucette-Stamm L, Beck S, Smith DR, Rogers J: The DNA sequence and comparative analysis of human chromosome 10. Nature. 2004 May 27;429(6990):375-81. doi: 10.1038/nature02462.
Pubmed: 15164054
Maldonado F, Hanks SK: A cDNA clone encoding human cAMP-dependent protein kinase catalytic subunit C alpha. Nucleic Acids Res. 1988 Aug 25;16(16):8189-90. doi: 10.1093/nar/16.16.8189.
Pubmed: 2843813
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings