Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Metabolism and Physiological Effects of N-Acetyltryptophan
Homo sapiens
Metabolic Pathway
Created: 2023-08-21
Last Updated: 2023-11-27
N-Acetyl-L-tryptophan or N-Acetyltryptophan, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltryptophan can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltryptophan is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tryptophan. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins. About 85% of all human proteins and 68% of all yeast proteins are acetylated at their N-terminus. Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT. N-acetylated amino acids, such as N-acetyltryptophan can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation. In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tryptophan can also occur. Many N-acetylamino acids, including N-acetyltryptophan are classified as uremic toxins if present in high abundance in the serum or plasma. Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits. Acetyltryptophan has been identified as a catabolite of tryptophan generated by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine.
References
Metabolism and Physiological Effects of N-Acetyltryptophan References
Tanaka H, Sirich TL, Plummer NS, Weaver DS, Meyer TW: An Enlarged Profile of Uremic Solutes. PLoS One. 2015 Aug 28;10(8):e0135657. doi: 10.1371/journal.pone.0135657. eCollection 2015.
Pubmed: 26317986
Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, Dizon R, Sayeeda Z, Tian S, Lee BL, Berjanskii M, Mah R, Yamamoto M, Jovel J, Torres-Calzada C, Hiebert-Giesbrecht M, Lui VW, Varshavi D, Varshavi D, Allen D, Arndt D, Khetarpal N, Sivakumaran A, Harford K, Sanford S, Yee K, Cao X, Budinski Z, Liigand J, Zhang L, Zheng J, Mandal R, Karu N, Dambrova M, Schioth HB, Greiner R, Gautam V: HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 2022 Jan 7;50(D1):D622-D631. doi: 10.1093/nar/gkab1062.
Pubmed: 34986597
Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K, Arnesen T: NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet. 2011 Jul;7(7):e1002169. doi: 10.1371/journal.pgen.1002169. Epub 2011 Jul 7.
Pubmed: 21750686
Ree R, Varland S, Arnesen T: Spotlight on protein N-terminal acetylation. Exp Mol Med. 2018 Jul 27;50(7):1-13. doi: 10.1038/s12276-018-0116-z.
Pubmed: 30054468
Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J: A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008 May;19(5):863-70. doi: 10.1681/ASN.2007121377. Epub 2008 Feb 20.
Pubmed: 18287557
Lin HJ, Han CY, Lin BK, Hardy S: Ethnic distribution of slow acetylator mutations in the polymorphic N-acetyltransferase (NAT2) gene. Pharmacogenetics. 1994 Jun;4(3):125-34.
Pubmed: 7920692
Grant DM, Blum M, Demierre A, Meyer UA: Nucleotide sequence of an intronless gene for a human arylamine N-acetyltransferase related to polymorphic drug acetylation. Nucleic Acids Res. 1989 May 25;17(10):3978. doi: 10.1093/nar/17.10.3978.
Pubmed: 2734109
Blum M, Grant DM, McBride W, Heim M, Meyer UA: Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol. 1990 Apr;9(3):193-203. doi: 10.1089/dna.1990.9.193.
Pubmed: 2340091
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings