
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Tyrosine-Kinase Inhibition of BCR-ABL Pathway
Homo sapiens
Physiological Pathway
Created: 2023-09-03
Last Updated: 2023-11-27
Tyrosine kinase inhibitors (TKIs) block chemical messengers (enzymes) called tyrosine kinases. Tyrosine kinases help to send growth signals in cells, so blocking them stops the cell growing and dividing. Cancer growth blockers can block one type of tyrosine kinase or more than one type. Tyrosine kinase inhibitors (TKIs) inhibit corresponding kinases from phosphorylating tyrosine residues of their substrates and then block the activation of downstream signaling pathways. Tyrosine kinase enzymes (TKs) can be categorized into receptor tyrosine kinases (RTKs), non-receptor tyrosine kinases (NRTKs), and a small group of dual-specificity kinases (DSK) which can phosphorylate serine, threonine, and tyrosine residues. RTKs are transmembrane receptor that includes vascular endothelial growth factor receptors (VEGFR), platelet-derived growth factor receptors (PDGFR), insulin receptor (InsR) family, and the ErbB receptor family, which includes epidermal growth factor receptors (EGFR) and the human epidermal growth factor receptor-2 (HER2). NRTKs are cytoplasmic proteins that consist of nine families, including Abl, Ack, Csk, Fak, Fes/Fer, Jak, Src, Syk/Zap70, and Tec, with the addition of Brl/Sik, Rak/Frk, Rlk/Txk, and Srm, which fall outside the nine defined families. The most notable example of DSKs is the mitogen-activated protein kinase kinases (MEKs), which are principally involved in the MAP pathways. Kinase inhibitors are either irreversible or reversible. The irreversible kinase inhibitors tend to covalently bind and block the ATP site resulting in irreversible inhibition. The reversible kinase inhibitors can further subdivide into four major subtypes based on the confirmation of the binding pocket as well as the DFG motif.
Different binding modes of TKIs include
Type I inhibitors: competitively bind to the ATP-binding site of active TKs. The arrangement of the DFG motif in type I inhibitors has the aspartate residue facing the catalytic site of the kinase.
Type II inhibitors: bind to inactive kinases, usually at the ATP-binding site. The DFG motif in type II inhibitors protrudes outward away from the ATP-binding site. Due to the outward rotation of the DFG motif, many type II inhibitors can also exploit regions adjacent to the ATP-binding site that would otherwise be inaccessible.
Type III inhibitors: do not interact with the ATP-binding pocket. Type III inhibitors exclusively bind to allosteric pockets adjacent to the ATP-binding region.
Type IV inhibitors: bind allosteric sites far removed from the ATP-binding pocket.
Type V inhibitors: refer to a proposed subset of kinase inhibitors that exhibit multiple binding modes
References
Tyrosine-Kinase Inhibition of BCR-ABL Pathway References
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
Pubmed: 29126136
Thomson RJ, Moshirfar M, Ronquillo Y: Tyrosine Kinase Inhibitors.
Pubmed: 33090752
Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J: The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 1992 Aug 7;70(3):431-42. doi: 10.1016/0092-8674(92)90167-b.
Pubmed: 1322798
Bochmann H, Gehrisch S, Jaross W: The gene structure of the human growth factor bound protein GRB2. Genomics. 1999 Mar 1;56(2):203-7. doi: 10.1006/geno.1998.5692.
Pubmed: 10051406
Skolnik EY, Lee CH, Batzer A, Vicentini LM, Zhou M, Daly R, Myers MJ Jr, Backer JM, Ullrich A, White MF, et al.: The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J. 1993 May;12(5):1929-36.
Pubmed: 8491186
Nishida K, Yoshida Y, Itoh M, Fukada T, Ohtani T, Shirogane T, Atsumi T, Takahashi-Tezuka M, Ishihara K, Hibi M, Hirano T: Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors. Blood. 1999 Mar 15;93(6):1809-16.
Pubmed: 10068651
Nagase T, Ishikawa K, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O: Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res. 1998 Feb 28;5(1):31-9. doi: 10.1093/dnares/5.1.31.
Pubmed: 9628581
Taylor TD, Noguchi H, Totoki Y, Toyoda A, Kuroki Y, Dewar K, Lloyd C, Itoh T, Takeda T, Kim DW, She X, Barlow KF, Bloom T, Bruford E, Chang JL, Cuomo CA, Eichler E, FitzGerald MG, Jaffe DB, LaButti K, Nicol R, Park HS, Seaman C, Sougnez C, Yang X, Zimmer AR, Zody MC, Birren BW, Nusbaum C, Fujiyama A, Hattori M, Rogers J, Lander ES, Sakaki Y: Human chromosome 11 DNA sequence and analysis including novel gene identification. Nature. 2006 Mar 23;440(7083):497-500. doi: 10.1038/nature04632.
Pubmed: 16554811
Saha M, Carriere A, Cheerathodi M, Zhang X, Lavoie G, Rush J, Roux PP, Ballif BA: RSK phosphorylates SOS1 creating 14-3-3-docking sites and negatively regulating MAPK activation. Biochem J. 2012 Oct 1;447(1):159-66. doi: 10.1042/BJ20120938.
Pubmed: 22827337
Hart TC, Zhang Y, Gorry MC, Hart PS, Cooper M, Marazita ML, Marks JM, Cortelli JR, Pallos D: A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1. Am J Hum Genet. 2002 Apr;70(4):943-54. doi: 10.1086/339689. Epub 2002 Feb 26.
Pubmed: 11868160
Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA, Li L, Yassin Y, Tamburino AM, Neel BG, Kucherlapati RS: Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet. 2007 Jan;39(1):70-4. doi: 10.1038/ng1926. Epub 2006 Dec 3.
Pubmed: 17143285
Matsuda M, Tanaka S, Nagata S, Kojima A, Kurata T, Shibuya M: Two species of human CRK cDNA encode proteins with distinct biological activities. Mol Cell Biol. 1992 Aug;12(8):3482-9. doi: 10.1128/mcb.12.8.3482.
Pubmed: 1630456
Fioretos T, Heisterkamp N, Groffen J, Benjes S, Morris C: CRK proto-oncogene maps to human chromosome band 17p13. Oncogene. 1993 Oct;8(10):2853-5.
Pubmed: 8378094
Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M, Kurata T, Matsuda M: DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol. 1996 Apr;16(4):1770-6. doi: 10.1128/mcb.16.4.1770.
Pubmed: 8657152
ten Hoeve J, Morris C, Heisterkamp N, Groffen J: Isolation and chromosomal localization of CRKL, a human crk-like gene. Oncogene. 1993 Sep;8(9):2469-74.
Pubmed: 8361759
Collins JE, Wright CL, Edwards CA, Davis MP, Grinham JA, Cole CG, Goward ME, Aguado B, Mallya M, Mokrab Y, Huckle EJ, Beare DM, Dunham I: A genome annotation-driven approach to cloning the human ORFeome. Genome Biol. 2004;5(10):R84. doi: 10.1186/gb-2004-5-10-r84. Epub 2004 Sep 30.
Pubmed: 15461802
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Blake TJ, Shapiro M, Morse HC 3rd, Langdon WY: The sequences of the human and mouse c-cbl proto-oncogenes show v-cbl was generated by a large truncation encompassing a proline-rich domain and a leucine zipper-like motif. Oncogene. 1991 Apr;6(4):653-7.
Pubmed: 2030914
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A, Ullrich A, Schlessinger J: Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell. 1991 Apr 5;65(1):83-90. doi: 10.1016/0092-8674(91)90410-z.
Pubmed: 1849461
Antonetti DA, Algenstaedt P, Kahn CR: Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol Cell Biol. 1996 May;16(5):2195-203. doi: 10.1128/mcb.16.5.2195.
Pubmed: 8628286
Williams CC, Allison JG, Vidal GA, Burow ME, Beckman BS, Marrero L, Jones FE: The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. J Cell Biol. 2004 Nov 8;167(3):469-78. doi: 10.1083/jcb.200403155.
Pubmed: 15534001
Hou J, Schindler U, Henzel WJ, Wong SC, McKnight SL: Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity. 1995 Apr;2(4):321-9.
Pubmed: 7719937
Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P, Monpoux F, Van Rompaey L, Baens M, Van den Berghe H, Marynen P: Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood. 1997 Oct 1;90(7):2535-40.
Pubmed: 9326218
Reiter A, Walz C, Watmore A, Schoch C, Blau I, Schlegelberger B, Berger U, Telford N, Aruliah S, Yin JA, Vanstraelen D, Barker HF, Taylor PC, O'Driscoll A, Benedetti F, Rudolph C, Kolb HJ, Hochhaus A, Hehlmann R, Chase A, Cross NC: The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res. 2005 Apr 1;65(7):2662-7. doi: 10.1158/0008-5472.CAN-04-4263.
Pubmed: 15805263
Adelaide J, Perot C, Gelsi-Boyer V, Pautas C, Murati A, Copie-Bergman C, Imbert M, Chaffanet M, Birnbaum D, Mozziconacci MJ: A t(8;9) translocation with PCM1-JAK2 fusion in a patient with T-cell lymphoma. Leukemia. 2006 Mar;20(3):536-7. doi: 10.1038/sj.leu.2404104.
Pubmed: 16424865
Highlighted elements will appear in red.
Highlight Compounds
No Compounds Present
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
No Compounds Present
Visualize Protein Data
Downloads
Settings