Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 781 - 790 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0014275

Pw015146 View Pathway

Phosphatidylcholine Biosynthesis PC(15:0/14:1(9Z))

Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
Metabolic

SMP0014276

Pw015147 View Pathway

Phosphatidylcholine Biosynthesis PC(15:0/15:0)

Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
Metabolic

SMP0014277

Pw015148 View Pathway

Phosphatidylcholine Biosynthesis PC(15:0/16:0)

Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
Metabolic

SMP0014278

Pw015149 View Pathway

Phosphatidylcholine Biosynthesis PC(15:0/16:1(9Z))

Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
Metabolic

SMP0014279

Pw015150 View Pathway

Phosphatidylcholine Biosynthesis PC(15:0/18:0)

Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
Metabolic

SMP0014280

Pw015151 View Pathway

Phosphatidylcholine Biosynthesis PC(15:0/18:1(11Z))

Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
Metabolic

SMP0014281

Pw015152 View Pathway

Phosphatidylcholine Biosynthesis PC(15:0/18:1(9Z))

Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
Metabolic

SMP0014282

Pw015153 View Pathway

Phosphatidylcholine Biosynthesis PC(15:0/18:2(9Z,12Z))

Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
Metabolic

SMP0014283

Pw015154 View Pathway

Phosphatidylcholine Biosynthesis PC(15:0/18:3(6Z,9Z,12Z))

Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
Metabolic

SMP0014284

Pw015155 View Pathway

Phosphatidylcholine Biosynthesis PC(15:0/18:3(9Z,12Z,15Z))

Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
Metabolic
Showing 781 - 790 of 65005 pathways