
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW176152 |
Topiramate Predicted Metabolism Pathway newHomo sapiens
Metabolites of Topiramate are predicted with biotransformer.
|
Creator: Omolola Created On: November 29, 2023 at 14:21 Last Updated: November 29, 2023 at 14:21 |
PW127721 |
drug action
Topotecan Action PathwayHomo sapiens
Topotecan, also known as Hycamtin, is an antineoplastic agent used to treat ovarian cancer, small cell lung cancer, or cervical cancer. It is a semi-synthetic derivative of camptothecin (obtained from the plant Camptotheca acuminata). This molecule is an anti-tumor drug with topoisomerase I-inhibitory activity. DNA topoisomerases are enzymes in the cell nucleus that regulate DNA topology (3-dimensional conformation) and DNA repairs. During these processes, DNA topoisomerase I creates reversible single-stranded breaks in DNA, allowing intact single DNA strands to pass through the break and relieve the topologic constraints. After DNA is sufficiently relaxed and the strand passage reaction is complete, DNA topoisomerase reattaches the broken DNA strands to form the unaltered topoisomers. Topotecan is believed to exert its cytotoxic effects during the S-phase of the cell cycle replication. Topotecan binds to the topoisomerase I-DNA complex and prevents the religation of the single strand breaks and of any breaks in the DNA. This ternary complex interferes with the moving replication fork, which leads to the induction of replication arrest. In consequence, this causes lethal double-stranded breaks in the DNA. The formation of this ternary complex eventually leads to apoptosis. Moreover, topotecan mimics a DNA base pair and binds at the site of DNA cleavage. Intercalation displaces the downstream DNA, thus preventing the religation of the cleaved strand.
|
Creator: Daphnee Created On: May 25, 2023 at 13:47 Last Updated: May 25, 2023 at 13:47 |
PW145127 |
drug action
Topotecan Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 15:08 Last Updated: October 07, 2023 at 15:08 |
PW176239 |
Topotecan Predicted Metabolism PathwayHomo sapiens
Metabolites of Topotecan are predicted with biotransformer.
|
Creator: Omolola Created On: December 04, 2023 at 13:06 Last Updated: December 04, 2023 at 13:06 |
PW002514 |
protein
TOR Signalling Pathway: Rapamycin-Based RepressionSaccharomyces cerevisiae
The TOR signalling pathway is responsible for the cellular reactions towards nutrient and energy availability and hypoxia/stress.
When TOR1/2 is activated, it activates TAP42 which in turn can inhibit SIT4 . I can also activate TAP41 phosphorylation. The enzyme SIT4 activates the dephosphorylation of TIP41 which in turn inhibits TAP42. The enzyme SIT4 also activates the dephosphorylation of Ure2-Gln3 complex and the
separation of Ure2 and Gln3. Gln3 then gets incorporated into the nucleus resulting in the transcription of GLN1, GLT1,GDH1,GDH2,GAP1,MEP2,DAL3,PUT1 which are incorporated into Nitrogen Utilization
|
Creator: miguel ramirez Created On: April 04, 2016 at 13:51 Last Updated: April 04, 2016 at 13:51 |
PW126018 |
drug action
Torasemide Action Pathway (New)Homo sapiens
Torasemide is a loop diuretic drug, administered orally or intravenously to treat hypertension and edema associated with heart failure, renal failure, or liver disease. It targets the nephrons of the kidney, mainly the ascending limb of the loop of henle. The basolateral membrane of the ascending loop of henle contains the Na+/K+ ATPase, Cl- channel and K+/Cl- co-transporter which are essential for the function for ion and water reabsorption. The Na+/K+ ATPase pumps Na+ from the cell into the peritubular fluid and K+ from the peritubular fluid into the cell. The K+/Cl- co-transporter moves K+ and Cl- from the cell into the peritubular fluid and the Cl- channel transports Cl- from the cell into the peritubular fluid. The apical membrane contains the Na+/K+/2Cl- co-transporter (NKCC2) and the K+ channel. The NCKCC2 is responsible for reabsorption Na+, K+ and Cl- from the lumen into the cells of the loop of henle. The K+ channel transports K+ from the cells back into the lumen. Torasemide is transported from the capillaries into the cells of the loop of henle then transported from the cell into the lumen. Torasemide binds to NKCC2 transporter and inhibits it, preventing Na+, K+ and Cl- reabsorption from the lumen. The concentration of these ions builds up in the lumen, decreasing the slope of the concentration gradient between the cells and the lumen. Since water reabsorption is linked to ion reabsorption, water reabsorption is also decreased, resulting in a greater volume of water being excreted in urine. This is relieves symptoms such as swelling/ edema in patients. Side effects frequent urination, headache, cough, sore throat, hearing loss, ringing in your ears, upset stomach, constipation, diarrhea, weakness and excessive thirst may occur when taking torasemide.
|
Creator: Karxena Harford Created On: May 21, 2021 at 03:44 Last Updated: May 21, 2021 at 03:44 |
PW144344 |
drug action
Torasemide Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 13:26 Last Updated: October 07, 2023 at 13:26 |
PW176518 |
Torasemide Predicted Metabolism PathwayHomo sapiens
Metabolites of Torasemide are predicted with biotransformer.
|
Creator: Omolola Created On: December 13, 2023 at 13:32 Last Updated: December 13, 2023 at 13:32 |
PW144657 |
drug action
Toremifene Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 14:08 Last Updated: October 07, 2023 at 14:08 |
PW000338 |
drug action
Torsemide Action PathwayHomo sapiens
Torsemide, also known as torasemide is a pharmacologically-active small molecule that belongs to the drug class of loop diuretics. It is commonly used to manage hypertension and edema in cases of congestive heart failure as it acts as a diuretic by blocking sodium transporters NKCC2 on the thick ascending limb of the Loop of Henle in the renal tissues. Specifically it acts on solute carrier family 12 member 1. This prevents the reuptake of sodium into the Loop of Henle which consequentially reduces the uptake of water and serves to both increase water loss and reduce blood pressure. Torsemide appears to reduce blood pressure beyond its action in reducing salt uptake in the Loop of Henle; it also seems to be involved in reducing vasoconstriction by blocking the action of angiotensin II.
|
Creator: WishartLab Created On: August 22, 2013 at 10:45 Last Updated: August 22, 2013 at 10:45 |