Browsing Pathways
Showing 11 -
20 of 605359 pathways
SMPDB ID | Pathway Name and Description | Pathway Class | Chemical Compounds | Proteins |
---|---|---|---|---|
SMP0121057View Pathway |
Bloch Pathway (Cholesterol Biosynthesis)The Bloch pathway, named after Konrad Bloch, is the pathway following the mevalonate pathway occurring within the cell to complete cholesterol biosynthesis. Cholesterol is a necessary metabolite that helps create many essential hormones within the human body. This pathway, combined with the mevalonate pathway is one of two ways to biosynthesize cholesterol; the Kandutsch-Russell pathway is an alternative pathway that uses different compounds than the Bloch Pathway beginning after lanosterol. The first three reactions occur in the endoplasmic reticulum. Lanosterol, a compound created through the mevalonate pathway, binds with the enzyme lanosterol 14-alpha demethylase to become 4,4-dimethyl-14a-hydroxymethyl-5a-cholesta-8,24-dien-3b-ol. Moving to the next reaction, 4,4-dimethyl-14a-hydroxymethyl-5a-cholesta-8,24-dien-3b-ol utilizes the enzyme lanosterol 14-alpha demethylase to create 4,4-dimethyl-14α-formyl-5α-cholesta-8,24-dien-3β-ol. Lanosterol 14-alpha demethylase is used one last time in this pathway, converting 4,4-dimethyl-14α-formyl-5α-cholesta-8,24-dien-3β-ol into 4,4-dimethyl-5a-cholesta-8,14,24-trien-3b-ol. Entering the inner nuclear membrane, 4,4-dimethyl-5a-cholesta-8,14,24-trien-3b-ol is catalyzed by a lamin B receptor to create 4,4-dimethyl-5a-cholesta-8,24-dien-3-b-ol. Entering the endoplasmic reticulum membrane, 4,4-dimethyl-5a-cholesta-8,24-dien-3-b-ol, with the help of methyl monooxygenase 1 is converted to 4a-hydroxymethyl-4b-methyl-5a-cholesta-8,24-dien-3b-ol. The enzyme methyl monooxygenase 1 uses 4a-hydroxymethyl-4b-methyl-5a-cholesta-8,24-dien-3b-ol to produce 4a-formyl-4b-methyl-5a-cholesta-8,24-dien-3b-ol. This reaction is repeated once more, using 4a-formyl-4b-methyl-5a-cholesta-8,24-dien-3b-ol and methyl monooxygenase 1 to create 4a-carboxy-4b-methyl-5a-cholesta-8,24-dien-3b-ol. Briefly entering the endoplasmic reticulum, 4a-carboxy-4b-methyl-5a-cholesta-8,24-dien-3b-ol then uses sterol-4-alpha-carboxylate-3-dehyrogenase to catalyze into 3-keto-4-methylzymosterol. Back in the endoplasmic reticulum membrane, where the pathway will continue on for the remaining reactions, 3-keto-4-methylzymosterol combines with 3-keto-steroid reductase to create 4a-methylzymosterol. 4a-Methylzymosterol joins the enzyme methylsterol monooxgenase 1 to result in 4a-hydroxymethyl-5a-cholesta-8,24-dien-3b-ol. 4a-Hydroxymethyl-5a-cholesta-8,24-dien-3b-ol uses methylsterol monooxygenase 1 to convert to 4a-formyl-5a-cholesta-8,24-dien-3b-ol. 4a-Formyl-5a-cholesta-8,24-dien-3b-ol proceeds to use the same enzyme used in the previous reaction: methylsterol monooxygenase 1, to catalyze into 4a-carboxy-5a-cholesta-8,24-dien-3b-ol. Sterol-4-alpha-carboxylate-3-dehydrogenase is used alongside 4a-carboxy-5a-cholesta-8,24-dien-3b-ol to produce 5a-cholesta-8,24-dien-3-one (also known as zymosterone). Zymosterone (5a-cholesta-8,24-dien-3-one) teams up with 3-keto-steroid reductase to create zymosterol. Zymosterol proceeds to use the enzyme 3-beta-hydroxysteroid-delta(8),delta(7)-isomerase to catalyze into 5a-cholesta-7,24-dien-3b-ol. The compound 5a-cholesta-7,24-dien-3b-ol then joins lathosterol oxidase to convert to 7-dehydrodesmosterol. 7-Dehydrodesmosterol and the enzyme 7-dehydrocholesterol reductase come together to create desmosterol. This brings the pathway to the final reaction, where desmosterol combines with delta(24)-sterol reductase to finally convert to cholesterol.
|
|
||
SMP0121012View Pathway |
Kidney Function - Distal Convoluted TubuleThe distal convoluted tubule of the nephron is the part of the kidney between the loop of henle and the collecting duct. When renin is released from the kidneys, it causes the activation of angiotensin I in the blood circulation which is cleaved to become angiotensin II. Angiotensin II stimulates the release of aldosterone from the adrenal cortex and release of vasopressin from the posterior pituitary gland. When in the circulation, vasopressin eventually binds to receptors on epithelial cells in the distal convoluted tubule. This causes vesicles that contain aquaporins to fuse with the plasma membrane. Aquaporins are proteins that act as water channels once they have bound to the plasma membrane. As a result, the permeability of the distal convoluted tubule changes to allow for water reabsorption back into the blood circulation. In addition, sodium, chlorine, and calcium are also reabsorbed back into the systemic circulation via their respective channels and exchangers. However, aldosterone is a major regulator of the reabsorption of these ions as well, as it changes the permeability of the distal convoluted tubule to these ions. As a result, a high concentration of sodium, chlorine, and calcium in the blood vessels occurs. The reabsorption of ions and water increases blood fluid volume and blood pressure.
|
Physiological
|
|
|
SMP0121128View Pathway |
Pancreas Function - Delta CellPancreatic delta cells produce somatostatin which functions to inhibit glucagon, insulin, and itself. Somatostatin is stored in granules in the delta cell and is released in response to an increase in blood sugar, calcium, and blood amino acids during absorption of a meal. In the process of somatostatin secretion, glucose must first undergo glycolysis in the mitochondrion to increase ATP in the cell. The inside of the alpha cell then becomes electrically positive due to the closure of potassium channels that were inhibited by ATP. From this closure, the potassium is no longer being shuttled out of the cell, thus depolarizing the cell due to the extra intracellular potassium. The resulting action potential from the increased membrane potential causes the voltage gate calcium channels to open, creating an influx of calcium into the cell. This triggers the exocytosis of somatostatin granules from the delta cell.
|
Physiological
|
||
SMP0000034View Pathway |
Sphingolipid MetabolismThe sphingolipid metabolism pathway depicted here describes the synthesis of sphingolipids which include sphingomyelins, ceramides, phosphoceramides, glucosylceramides, galactosylceramides, sulfagalactosylceramides, lactosylceramides, and various other ceramides. The core of a sphingolipid is the long-chain amino alcohol called sphingosine. Amino acylation, with a long-chain fatty acid, at the 2-carbon position of sphingosine yields a ceramide. Sphingolipids are a component of all membranes but are particularly abundant in the myelin sheath. De novo sphingolipid synthesis begins at the cytoplasmic side of the ER (endoplasmic reticulum) with the formation of 3-keto-dihydrosphingosine (also known as 3-ketosphinganine) by the enzyme known as serine palmitoyltransferase (SPT). The preferred substrates for this reaction are palmitoyl-CoA and serine. Next, 3-keto-dihydrosphingosine is reduced to form dihydrosphingosine (also known as sphinganine) via the enzyme 3-ketodihydrosphingosine reductase (KDHR), which is also known as 3-ketosphinganine reductase. Dihydrosphingosine (sphinganine) is acylated by the action of several dihydroceramide synthases (CerS) to form dihydroceramide. Dihydroceramide is then desaturated in the original palmitic portion of the lipid via dihydroceramide desaturase 1 (DES1) to form ceramide. Following the conversion to ceramide, sphingosine is released via the action of ceramidase. Sphingosine can be re-converted into a ceramide by condensation with an acyl-CoA catalyzed by the various CerS enzymes. Ceramide may be phosphorylated by ceramide kinase to form ceramide-1-phosphate. Alternatively, it may be glycosylated by glucosylceramide synthase (to form a glucosylceramide) or galactosylceramide synthase (to form a galactosylceramide). Additionally, it can be converted to sphingomyelin by the addition of a phosphorylcholine headgroup by sphingomyelin synthase (SMS). Sphingomyelins are the only sphingolipids that are phospholipids. Diacylglycerol is also generated via this process. Alternately, ceramide may be broken down by a ceramidase to form sphingosine. Sphingosine may be phosphorylated to form sphingosine-1-phosphate, which may, in turn, be dephosphorylated to regenerate sphingosine. Sphingolipid catabolism allows the reversion of these metabolites to ceramide. The complex glycosphingolipids are hydrolyzed to glucosylceramide and galactosylceramide. These lipids are then hydrolyzed by beta-glucosidases and beta-galactosidases to regenerate ceramide. Similarly, sphingomyelins may be broken down by sphingomyelinase to create ceramides and phosphocholine. The only route by which sphingolipids are converted into non-sphingolipids is through sphingosine-1-phosphate lyase. This forms ethanolamine phosphate and hexadecenal.
|
|
|
|
SMP0000008View Pathway |
Phenylalanine and Tyrosine MetabolismIn man, phenylalanine is an essential amino acid which must be supplied in the dietary proteins. Once in the body, phenylalanine may follow any of three paths. It may be (1) incorporated into cellular proteins, (2) converted to phenylpyruvic acid, or (3) converted to tyrosine. Tyrosine is found in many high protein food products such as soy products, chicken, turkey, fish, peanuts, almonds, avocados, bananas, milk, cheese, yogurt, cottage cheese, lima beans, pumpkin seeds, and sesame seeds. Tyrosine can be converted into L-DOPA, which is further converted into dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline). Depicted in this pathway is the conversion of phenylalanine to phenylpyruvate (via amino acid oxidase or tyrosine amino transferase acting on phenylalanine), the incorporation of phenylalanine and/or tyrosine into polypeptides (via tyrosyl tRNA synthetase and phenylalyl tRNA synthetase) and the conversion of phenylalanine to tyrosine via phenylalanine hydroxylase. This reaction functions both as the first step in tyrosine/phenylalanine catabolism by which the body disposes of excess phenylalanine, and as a source of the amino acid tyrosine. The decomposition of L-tyrosine begins with an α-ketoglutarate dependent transamination through the tyrosine transaminase to para-hydroxyphenylpyruvate. The next oxidation step catalyzed by p-hydroxylphenylpyruvate-dioxygenase creates homogentisate. In order to split the aromatic ring of homogentisate, a further dioxygenase, homogentistate-oxygenase, is required to create maleylacetoacetate. Fumarylacetate is created by the action maleylacetoacetate-cis-trans-isomerase through rotation of the carboxyl group created from the hydroxyl group via oxidation. This cis-trans-isomerase contains glutathione as a coenzyme. Fumarylacetoacetate is finally split via fumarylacetoacetate-hydrolase into fumarate (also a metabolite of the citric acid cycle) and acetoacetate (3-ketobutyroate).
|
|
|
|
SMP0000007View Pathway |
beta-Alanine MetabolismBeta-alanine, 3-aminopropanoic acid, is a non-essential amino acid. Beta-Alanine is formed by the proteolytic degradation of beta-alanine containing dipeptides: carnosine, anserine, balenine, and pantothenic acid (vitamin B5). These dipeptides are consumed from protein-rich foods such as chicken, beef, pork, and fish. Beta-Alanine can also be formed in the liver from the breakdown of pyrimidine nucleotides into uracil and dihydrouracil and then metabolized into beta-alanine and beta-aminoisobutyrate. Beta-Alanine can also be formed via the action of aldehyde dehydrogenase on beta-aminoproionaldehyde which is generated from various aliphatic polyamines. Under normal conditions, beta-alanine is metabolized to aspartic acid through the action of glutamate decarboxylase. It addition, it can be converted to malonate semialdehyde and thereby participate in propanoate metabolism. Beta-Alanine is not a proteogenic amino acid. This amino acid is a common athletic supplementation due to its belief to improve performance by increased muscle carnosine levels.
|
|
|
|
SMP0000716View Pathway |
Thyroid Hormone SynthesisThyroid hormone synthesis is a process that occurs in the thyroid gland in humans that results in the production of thyroid hormones which regulate many different processes in the body, such as metabolism, temperature regulation and growth/development. Thyroid hormone synthesis begins in the nucleus of a thyroid follicular cell, as thyroglobulin synthesis occurs here and is transported to the endoplasmic reticulum. From there, thyroglobulin transported through endocytosis into the intracellular space, and then transported through exocytosis to the follicle colloid. There, thyroglobulin is joined by iodide that has been transported from the blood, through the thyroid follicular cell and arrived in the the follicle colloid using pendrin, and hydrogen peroxide to be catalyzed by thyroid peroxidase, creating thyroglobulin + iodotyrosine. Then, iodide, hydrogen peroxide and thyroidperoxidase create thyroglobulin + 3,5-diiodo-L-tyrosine. Thyroglobulin+3,5-diiodo-L-tyrosine then joins with hydrogen peroxide and thyroid peroxidase to create thyroglobulin + 2-aminoacrylic acid and thyroglobulin+liothyronine. Thyroglobulin + liothyronine then goes through two processes, the first being its transportation into the cell and undergoing of proteolysis, which is followed by liothyronine being transported into the bloodstream. The second process is thyroglobulin + liothyronine being catalyzed by thyroid peroxidase and resulting in the production of thyroglobulin + thyroxine. Thyroglobulin + thyroxine is then transported back into the cell, undergoes proteolysis, and thyroxine alone is transported back out of the cell and into the bloodstream.
|
|||
SMP0000464View Pathway |
Vitamin K MetabolismVitamin K describes a group of lipophilic, hydrophobic vitamins that exist naturally in two forms (and synthetically in three others): vitamin K1, which is found in plants, and vitamin K2, which is synthesized by bacteria. Vitamin K is an important dietary component because it is necessary as a cofacter in the activation of vitamin K dependent proteins. Metabolism of vitamin K occurs mainly in the liver. In the first step, vitamin K is reduced to its quinone form by a quinone reductase such as NAD(P)H dehydrogenase. Reduced vitamin K is the form required to convert vitamin K dependent protein precursors to their active states. It acts as a cofactor to the integral membrane enzyme vitamin K-dependent gamma-carboxylase (along with water and carbon dioxide as co-substrates), which carboxylates glutamyl residues to gamma-carboxy-glutamic acid residues on certain proteins, activating them. Each converted glutamyl residue produces a molecule of vitamin K epoxide, and certain proteins may have more than one residue requiring carboxylation. To complete the cycle, the vitamin K epoxide is returned to vitamin K via the vitamin K epoxide reductase enzyme, also an integral membrane protein. The vitamin K dependent proteins include a number of important coagulation factors, such as prothrombin. Thus, warfarin and other coumarin drugs act as anticoagulants by blocking vitamin K epoxide reductase.
|
|||
SMP0000011View Pathway |
Inositol MetabolismThe carbocyclic polyol inositol (otherwise known as myo-inositol) has a significant role in physiological systems as many secondary eukaryotic messengers derive their structure from inositol. Examples of secondary messengers derived from inositol include inositol phosphates, phosphatidylinositol (PI), and phosphatidylinositol phosphate (PIP) lipids.
Inositol is abundant in many commonly consumed foods such as bran-rich cereals, beans, nuts, and fruit (particularly cantaloupe, melons, and oranges). It can also be synthesized by the body through the conversion of glucose-6-phosphate into mho-inositol under the following pathway: (1) glucose-6-phosphate undergoes isomerization due to the action of inositol-3-phosphate synthase (ASYNA1) which produces myo-inositol 3-phosphate; (2) myo-inositol 3-phosphate undergoes dephosphorylation via the action of inositol monophosphatase (IMPase 1) to produce myo-inositol. From this point, myo-inositol can move through multiple different fates depending on the secondary messenger being synthesized. For phosphatidyliositol, phosphatidylinositol synthase generates it with the substrates CDP-diacylglycerol and myo-inositol. Phosphatidyliositol can be modified further to generate phosphatidylinositol phosphate lipids via the action of class I, II and III phosphoinositide 3-kinases (PI 3-kinases). Other messengers (i.e. inositol phosphates) can be produced with the phospholipase C-mediated hydrolysis of phosphatidylinositol phosphates or with the action of other enzymes that remove or add phosphate groups.
|
|
|
|
SMP0000030View Pathway |
Oxidation of Branched-Chain Fatty AcidsIn the majority of organisms, fatty acid degradation occurs mostly through the beta-oxidation cycle. In plants, this cycle only happens in the peroxisome, while in mammals this cycle happens in both the peroxisomes and mitochondria. Unfortunately, traditional fatty acid oxidation does not work for branched-chain fatty acids, or fatty acids that do not have an even number of carbons, like the fatty acid phytanic acid, found in animal milk. This acid can not be oxidized through beta-oxidation, as problems arise when water is added at the branched beta-carbon. To be able to oxidize this fatty acid, the carbon is oxidized by oxygen, which removes the initial carboxyl group, which shortens the chain. Now lacking a methyl group, this chain can be beta-oxidized. Now moving to the mitochondria, there are four reactions that occur, and are repeated for each molecule of the fatty acid. Each time the cycle of these reactions is completed, the chain is relieved of two carbons, which are oxidized and are taken away by NADH and FADH2, energy carriers that collect the carbons energy. After beta-oxidation in the cycle of reactions, an acetyl-CoA unit is released and is recycled into the cycle of reactions in the mitochondria, until the chain is fully broken down into acetyl-CoA, and can enter the TCA cycle. Once in the TCA cycle, it is converted to NADH and FADH2, which in turn help move along mitochondrial ATP production. Acetyl-CoA also helps produce ketone bodies that are further converted to energy in the heart and the brain.
|
|
|
Showing 11 -
20 of 98262 pathways