Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 31 - 40 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0000618

Pw000594 View Pathway

Fosphenytoin (Antiarrhythmic) Metabolism Pathway

This pathway illustrates the fosphenytoin targets involved in antiarrhythmic therapy. Contractile activity of cardiac myocytes is elicited via action potentials mediated by a number of ion channel proteins. During rest, or diastole, cells maintain a negative membrane potential; i.e. the inside the cell is negatively charged relative to the cells’ extracellular environment. Membrane ion pumps, such as the sodium-potassium ATPase and sodium-calcium exchanger (NCX), maintain low intracellular sodium (5 mM) and calcium (100 nM) concentrations and high intracellular potassium (140 mM) concentrations. Conversely, extracellular concentrations of sodium (140 mM) and calcium (1.8 mM) are relatively high and extracellular potassium concentrations are low (5 mM). At rest, the cardiac cell membrane is impermeable to sodium and calcium ions, but is permeable to potassium ions via inward rectifier potassium channels (I-K1), which allow an outward flow of potassium ions down their concentration gradient. The positive outflow of potassium ions aids in maintaining the negative intracellular electric potential. When cells reach a critical threshold potential, voltage-gated sodium channels (I-Na) open and the rapid influx of positive sodium ions into the cell occurs as the ions travel down their electrochemical gradient. This is known as the rapid depolarization or upstroke phase of the cardiac action potential. Sodium channels then close and rapidly activated potassium channels such as the voltage-gated transient outward delayed rectifying potassium channel (I-Kto) and the voltage-gated ultra rapid delayed rectifying potassium channel (I-Kur) open. These events make up the early repolarization phase during which potassium ions flow out of the cell and sodium ions are continually pumped out. During the next phase, known as the plateau phase, calcium L-type channels (I-CaL) open and the resulting influx of calcium ions roughly balances the outward flow of potassium channels. During the final repolarization phase, the voltage-gated rapid (I-Kr) and slow (I-Ks) delayed rectifying potassium channels open increasing the outflow of potassium ions and repolarizing the cell. The extra sodium and calcium ions that entered the cell during the action potential are extruded via sodium-potassium ATPases and NCX and intra- and extracellular ion concentrations are restored. In specialized pacemaker cells, gradual depolarization to threshold occurs via funny channels (I-f). Fosphenytoin, an antiepileptic drug that exhibits Class 1B antiarrhythmic effects, is a soluble pro-drug phosphate ester. It is rapidly absorbed intramuscularly and rapidly metabolized in the blood stream by plasma esterases to the active drug, phenytoin. Fosphenytoin was developed to replace parenteral phenytoin sodium for the treatment of epileptic seizures. Parenteral phenytoin sodium was originally prepared in 40% propylene glycol and 10% ethanol at pH 12. This formulation exhibited a range of toxic effects from severe irritation and pain at the injection site to occasional death from rapid injections. Although fosphenytoin is used to treat epileptic seizures, antiarrhythmic effects have also been observed. The active metabolite, phenytoin, preferentially binds to sodium channels (I-Na) in their inactive state. This causes a slight delay in the rapid depolarization phase of cardiac myocyte action potentials. In contrast to Class 1A antiarrhythmic drugs (e.g. quinidine) which prolong action potential duration, fosphenytoin and other Class 1B antiarrhythmics reduce the refractory period or action potential duration due to their membrane stabilizing effects. Phenytoin has been found to be beneficial in the treatment of atrial and ventricular arrhythmias.
Drug Metabolism

SMP0000611

Pw000587 View Pathway

Ticlopidine Metabolism Pathway

Ticlopidine, marketed as Ticlid, is an antiplatelet drug that targets the P2Y12 receptor of platelets. Ticlopidine is taken orally and is a prodrug that must be metabolically activated before it can be effective. It first enters the liver and enters the endoplasmic reticulum where it is metabolized to form the active metabolite. First, it is catalyzed by cytochromes P450 2C19, 2B6 and 1A2 into 2-oxoclopidogrel. Secondly, it is processed by cytochromes P450 2B6, 2C9, 2C19, 3A4, 3A5, and serum paraoxonase/arylesterase 1 into the active metabolite of clopidogrel. The active metabolite of clopidogrel then enters the blood stream, where it binds irreversibly to the P2Y purinoreceptor 12 on the surface of platelet cells, preventing ADP from binding to and activating it. Clopidogrel prevents the activation of the Gi protein associated with the P2Y12 receptor from inactivating adenylate cyclase in the platelet, leading to a buildup of cAMP. This cAMP then activates calcium efflux pumps, preventing calcium buildup in the platelet, which would cause activation, and later, aggregation.
Drug Metabolism

SMP0000606

Pw000582 View Pathway

Tamoxifen Metabolism Pathway

Tamoxifen is a selective estrogen modulator (SERM) used in the treatment of estrogen-sensitive breast cancer. Tamoxifen itself only has weak anti-estrogen effects and must be converted into more active metabolites to have therapeutic activity. Metabolism takes place in the liver and is carried out primarily by cytochrome P450 enzymes. Tamoxifen is hydroxylated by CYP2D6 and demethylated by CYP3A4 and CYP3A5, producing the active metabolites 4-hydroxytamoxifen and endoxifen. These metabolites inhibit estrogen binding to estrogen receptors in breast cancer cells, which in turn inhibit tumour growth.
Drug Metabolism

SMP0000623

Pw000599 View Pathway

Heroin Metabolism Pathway

Heroin is a mu-opioid agonist. It acts on endogenous mu-opioid receptors that are spread in discrete packets throughout the brain, spinal cord and gut in almost all mammals. Heroin, along with other opioids, are agonists to four endogenous neurotransmitters. They are beta-endorphin, dynorphin, leu-enkephalin, and met-enkephalin. The body responds to heroin in the brain by reducing (and sometimes stopping) production of the endogenous opioids when heroin is present. Endorphins are regularly released in the brain and nerves, attenuating pain.
Drug Metabolism

SMP0000650

Pw000626 View Pathway

Doxorubicin Metabolism Pathway

Doxorubicin is an anthracycline antibiotic used as a cancer chemotherapy drug. The major metabolic route of doxorubicin metabolism is two-electron reduction to doxorubicinol. A second route is one-electron reduction resulting in a doxorubicin-semiquinone, which can be undertaken by NADH dehydrogenases in the sarcoplasmic reticulum or mitochondrion, or nitric oxide synthases, NADPH dehydrogenase, or xanthine oxidase. Reactive oxygen species are formed when the semiquinone is re-oxidized back to doxorubicin. The reactive oxygen species are thought by some to be responsible for the drug's effects and cardiotoxicity, and can be deactivated by glutathione peroxidase, catalase, and superoxide dismutase. A third and minor metabolic route involves deglycosidation and results in the formation of doxirubicinol hydroxyaglycone. Approximately 50% of doxorubicin is eliminated unchanged from the body.
Drug Metabolism

SMP0000638

Pw000614 View Pathway

Levomethadyl Acetate Metabolism Pathway

Levomethadyl Acetate (also known as levacetylmethadol or levo-α-acetylmethadol) (LAAM), is a synthetic opioid structurally similar to methadone. It is an opioid agonist that has been used as an analgesic and to treat opioid dependence. Levomethadyl Acetate is metabolized by cytochrome P450 3A4 in two N-demethylation reactions to nor-levomethadyl acetate (nor-LAAM) and subsequently to dinor-levomethadyl acetate (dinor-LAAM).
Drug Metabolism

SMP0000631

Pw000607 View Pathway

Prednisone Metabolism Pathway

Prednisone is a medication that is used to suppress the immune system. It works by interrupting cytokine pathways type 1 and type 2. It is administered orally, through tablet, or solution (concentrated or non-concentrated). Prednisone is a glucocorticoid, and as well as being used for immune system suppression, it is used for its anti inflammatory properties. It exerts these properties by binding to glucocorticoid receptors in the cell, which inhibits inflammatory cells. This prevents inflammatory mediators from being expressed.
Drug Metabolism

SMP0000600

Pw000576 View Pathway

Irinotecan Metabolism Pathway

Irinotecan is a medication commonly sold as Camptosar, used to stop the growth of cancer cells, and to stop the spread of cancer cells in the human body. Specifically cancers of the rectum and of the colon. Commonly used in combination with chemotherapy. Irinotecan works through its active metabolite, SN-38, which inhibits the action of topoisomerase I. This enzyme is responsible for creating single-strand breaks in DNA during replication. These single-strands are reversible. SN-38 and Irinotecan binding to topoisomerase I-DNA complex results in the prevention of religation the DNA strand mentioned above, which creates double-strand DNA breakage. This breakage leads to cell death. Irinotecan is taken orally, but can also be injected.
Drug Metabolism

SMP0000619

Pw000595 View Pathway

Felodipine Metabolism Pathway

Felodipine is a medication used to treat hypertension (high blood pressure). Untreated hypertension can lead to a heart attack, heart disease or stroke. High sodium intake can contribute to hypertension. Felodipine works by blocking calcium channels in vascular smooth muscle cells, stabilizing these voltage-gated L-type calcium channels, which will stop calcium-dependent myocyte vasoconstriction. This widens the blood vessels, allowing for more blood to pass through, lowering blood pressure. When used to treat angina, felodipine acts through improving the amount of blood pumping to the heart. Hypertension is a very common condition in North America, and can be managed with medication, diet and a healthy lifestyle. This pathway depicts the pharmacological action of felodipine on arterial smooth muscle cells. Felodipine decreases arterial smooth muscle contractility and subsequent vasoconstriction by inhibiting the influx of calcium ions through L-type calcium channels. Calcium ions entering the cell through these channels bind to calmodulin. Calcium-bound calmodulin then binds to and activates myosin light chain kinase (MLCK). Activated MLCK catalyzes the phosphorylation of the regulatory light chain subunit of myosin, a key step in muscle contraction. Signal amplification is achieved by calcium-induced calcium release from the sarcoplasmic reticulum through ryanodine receptors. Inhibition of the initial influx of calcium decreases the contractile activity of arterial smooth muscle cells and results in vasodilation. The vasodilatory effects of felodipine result in an overall decrease in blood pressure. Felodipine may be used to treat mild to moderate essential hypertension. .
Drug Metabolism

SMP0000634

Pw000610 View Pathway

Carbamazepine Metabolism Pathway

Carbamazepine is a drug used in the treatment of epilepsy, bipolar disorder, trigeminal neuralgia, and other psychiatric disorders. Carbamazepine is almost entirely metabolized in the liver, with the primary metabolic pathway being conversion to 10,11-epoxycarbamazepine. Ring hydroxylation to 2-hydroxycarbamazepine and 3-hydroxycarbamazepine represent a minor metabolic route, presumably though a carbamazepine 2,3-epoxide intermediate. Potential bioactivation occurs via CYP3A4-mediated secondary oxidation of 2-hydroxycarbamazepine to the potentially reactive carbamazepine iminoquinone and of 3-hydroxycarbamazepine to form other reactive metabolites. Radicals can also be formed from metabolism of 3-hydroxycarbamazepine by myeloperoxidase. Oxcarbazepine, an anticonvulsant used primarily in the treatment of epilepsy, is converted to 10,11-dihydroxycarbamazepine via 10-hydroxycarbazepine.
Drug Metabolism
Showing 31 - 40 of 62 pathways