Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 561 - 570 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0000594

Pw000570 View Pathway

Fosinopril Metabolism Pathway

Fosinopril (trade name: Monopril) belongs to the class of drugs known as angiotensin-converting enzyme (ACE) inhibitors and is used primarily to lower high blood pressure (hypertension). This drug can also be used in the treatment of congestive heart failure and type II diabetes. Fosinopril is a prodrug which, following oral administration, undergoes biotransformation in vivo into its active form fosinoprilat via cleavage of its ester group by the liver. Angiotensin-converting enzyme (ACE) is a component of the body's renin–angiotensin–aldosterone system (RAAS) and cleaves inactive angiotensin I into the active vasoconstrictor angiotensin II. ACE (or kininase II) also degrades the potent vasodilator bradykinin. Consequently, ACE inhibitors decrease angiotensin II concentrations and increase bradykinin concentrations resulting in blood vessel dilation and thereby lowering blood pressure.
Drug Metabolism

SMP0000595

Pw000571 View Pathway

Moexipril Metabolism Pathway

Moexipril (trade name: Univasc) belongs to the class of drugs known as angiotensin-converting enzyme (ACE) inhibitors and is used primarily to lower high blood pressure (hypertension). This drug can also be used in the treatment of congestive heart failure and type II diabetes. Moexipril is a prodrug which, following oral administration, undergoes biotransformation in vivo into its active form moexiprilat via cleavage of its ester group by the liver. Angiotensin-converting enzyme (ACE) is a component of the body's renin–angiotensin–aldosterone system (RAAS) and cleaves inactive angiotensin I into the active vasoconstrictor angiotensin II. ACE (or kininase II) also degrades the potent vasodilator bradykinin. Consequently, ACE inhibitors decrease angiotensin II concentrations and increase bradykinin concentrations resulting in blood vessel dilation and thereby lowering blood pressure.
Drug Metabolism

SMP0000596

Pw000572 View Pathway

Quinapril Metabolism Pathway

Quinapril (trade name: Accupril) belongs to the class of drugs known as angiotensin-converting enzyme (ACE) inhibitors and is used primarily to lower high blood pressure (hypertension). This drug can also be used in the treatment of congestive heart failure and type II diabetes. Quinapril is a prodrug which, following oral administration, undergoes biotransformation in vivo into its active form quinaprilat via cleavage of its ester group by the liver. Angiotensin-converting enzyme (ACE) is a component of the body's renin–angiotensin–aldosterone system (RAAS) and cleaves inactive angiotensin I into the active vasoconstrictor angiotensin II. ACE (or kininase II) also degrades the potent vasodilator bradykinin. Consequently, ACE inhibitors decrease angiotensin II concentrations and increase bradykinin concentrations resulting in blood vessel dilation and thereby lowering blood pressure.
Drug Metabolism

SMP0000597

Pw000573 View Pathway

Ramipril Metabolism Pathway

Ramipril (trade name: Altace) belongs to the class of drugs known as angiotensin-converting enzyme (ACE) inhibitors and is used primarily to lower high blood pressure (hypertension). This drug can also be used in the treatment of congestive heart failure and type II diabetes. Ramipril is a prodrug which, following oral administration, undergoes biotransformation in vivo into its active form ramiprilat via cleavage of its ester group by the liver. Angiotensin-converting enzyme (ACE) is a component of the body's renin–angiotensin–aldosterone system (RAAS) and cleaves inactive angiotensin I into the active vasoconstrictor angiotensin II. ACE (or kininase II) also degrades the potent vasodilator bradykinin. Consequently, ACE inhibitors decrease angiotensin II concentrations and increase bradykinin concentrations resulting in blood vessel dilation and thereby lowering blood pressure.
Drug Metabolism

SMP0000598

Pw000574 View Pathway

Spirapril Metabolism Pathway

Spirapril (trade name: Renormax) belongs to the class of drugs known as angiotensin-converting enzyme (ACE) inhibitors and is used primarily to lower high blood pressure (hypertension). This drug can also be used in the treatment of congestive heart failure and type II diabetes. Spirapril is a prodrug which, following oral administration, undergoes biotransformation in vivo into its active form spiraprilat via cleavage of its ester group by the liver. Angiotensin-converting enzyme (ACE) is a component of the body's renin–angiotensin–aldosterone system (RAAS) and cleaves inactive angiotensin I into the active vasoconstrictor angiotensin II. ACE (or kininase II) also degrades the potent vasodilator bradykinin. Consequently, ACE inhibitors decrease angiotensin II concentrations and increase bradykinin concentrations resulting in blood vessel dilation and thereby lowering blood pressure.
Drug Metabolism

SMP0000599

Pw000575 View Pathway

Trandolapril Metabolism Pathway

Trandolapril (trade name: Mavik) belongs to the class of drugs known as angiotensin-converting enzyme (ACE) inhibitors and is used primarily to lower high blood pressure (hypertension). This drug can also be used in the treatment of congestive heart failure and type II diabetes. Trandolapril is a prodrug which, following oral administration, undergoes biotransformation in vivo into its active form trandolaprilat via cleavage of its ester group by the liver. Angiotensin-converting enzyme (ACE) is a component of the body's renin–angiotensin–aldosterone system (RAAS) and cleaves inactive angiotensin I into the active vasoconstrictor angiotensin II. ACE (or kininase II) also degrades the potent vasodilator bradykinin. Consequently, ACE inhibitors decrease angiotensin II concentrations and increase bradykinin concentrations resulting in blood vessel dilation and thereby lowering blood pressure.
Drug Metabolism

SMP0000600

Pw000576 View Pathway

Irinotecan Metabolism Pathway

Irinotecan is a medication commonly sold as Camptosar, used to stop the growth of cancer cells, and to stop the spread of cancer cells in the human body. Specifically cancers of the rectum and of the colon. Commonly used in combination with chemotherapy. Irinotecan works through its active metabolite, SN-38, which inhibits the action of topoisomerase I. This enzyme is responsible for creating single-strand breaks in DNA during replication. These single-strands are reversible. SN-38 and Irinotecan binding to topoisomerase I-DNA complex results in the prevention of religation the DNA strand mentioned above, which creates double-strand DNA breakage. This breakage leads to cell death. Irinotecan is taken orally, but can also be injected.
Drug Metabolism

SMP0000601

Pw000577 View Pathway

Etoposide Metabolism Pathway

Etoposide is a medication commonly sold as Vepesid, or Etopophos. It is a type of chemotherapy. It is used to treat many types of cancers, including nonlymphocytic leukemia and testicular cancer. Etoposide is semisynthetic and a derivative of the podophyllotoxins which is an epipodophyllotoxin. This substance is found in the root of the American Mayapple plant. The way this substance works is by inhibiting topoisomerase II, which inhibits DNA synthesis. This breaks the catalytic cycle of topoisomerase II, and after a while overwhelms the cell. This can cause a death pathway, killing the cancer cell. Etoposide is administered by a doctor, through intravenous infusion.
Drug Metabolism

SMP0000602

Pw000578 View Pathway

Teniposide Metabolism Pathway

Teniposide is a type of chemotherapy drug, derived from the epipodophyllotoxin form the American Mayapple plant. Teniposide is related to etoposide, another anti-cancer drug. It works in a similar way, inhibiting topoisomerase II. This causes single- and double-stranded DNA breaks. These breaks cause cell growth to stop and prevents cancer cells from entering mitosis. It is administered through an intravenous infusion. It is used to treat many cancers such as lymphoma, leukemia (acute lymphocytic), and neuroblastoma.
Drug Metabolism

SMP0000603

Pw000579 View Pathway

Gemcitabine Metabolism Pathway (old)

Gemcitabine is a cytidine analogue used in the treatment of certain cancers. Gemcitabine enters the cell via sodium nucleoside co-transporters (SLC29A1, SLC28A1, and SLC28A3), where it acts through multiple mechanisms to produce a cytotoxic effect. Gemcitabine is phosphorylated into gemcitabine monophosphate by deoxycytidine kinase, which is then subsequently phosphorylated into the diphosphate and triphosphate nucleotides by UMP-CMP kinase and nucleoside diphosphate kinase respectively. Gemcitabine diphosphate inhibits ribonucleoside-diphosphate reductase, a crucial enzyme in the conversion of ribonucleotides into deoxyribonucleotides for DNA synthesis. Gemcitabine triphosphate on the other hand can be incorporated into DNA, causing chain termination. Furthermore, gemcitabine monophosphate can be deaminated into difluoro-deoxyuridine monophosphate, which inhibits thymidylate synthase, an enzyme involved in the production of dTTP for DNA synthesis.
Drug Metabolism
Showing 561 - 570 of 65006 pathways